317 resultados para Cultured population

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mud crab (Scylla spp.) aquaculture industry has expanded rapidly in recent years in many countries in the Indo - West Pacific (IWP) region as an alternative to marine shrimp culture because of significant disease outbreaks and associated failures of many shrimp culture industries in the region. Currently, practices used to produce and manage breeding crabs in hatcheries may compromise levels of genetic diversity, ultimately compromising growth rates, disease resistance and stock productivity. Therefore, to avoid “genetic pollution” and its harmful effects and to promote further development of mud crab aquaculture and fisheries in a sustainable way, a greater understanding of the genetic attributes of wild and cultured mud crab stocks is required. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations for multiple purposes including for commercial production, recreation and conservation and to increase profitability and sustainability of newly emerging crab culture industries. Phylogeographic patterns and the genetic structure of Asian mud crab populations across the IWP were assessed to determine if they were concordant with those of other widespread taxa possessing pelagic larvae of relatively long duration. A 597 bp fragment of the mitochondrial DNA COI gene was amplified and screened for variation in a total of 297 individuals of S. paramamosain from six sampling sites across the species’ natural geographical distribution in the IWP and 36 unique haplotypes were identified. Haplotype diversities per site ranged from 0.516 to 0.879. Nucleotide diversity estimates among haplotypes were 0.11% – 0.48%. Maximum divergence observed among S. paramamosain samples was 1.533% and samples formed essentially a single monophyletic group as no obvious clades were related to geographical location of sites. A weak positive relationship was observed however, between genetic distance and geographical distance among sites. Microsatellite markers were then used to assess contemporary gene flow and population structure in Asian mud crab populations sampled across their natural distribution in the IWP. Eight microsatellite loci were screened in sampled S. paramamosain populations and all showed high allelic diversity at all loci in sampled populations. In total, 344 individuals were analysed, and 304 microsatellite alleles were found across the 8 loci. The mean number of alleles per locus at each site ranged from 20.75 to 28.25. Mean allelic richness per site varied from 17.2 to 18.9. All sites showed high levels of heterozygosity as average expected heterozygosities for all loci ranged from 0.917 – 0.953 while mean observed heterozygosity ranged from 0.916 – 0.959. Allele diversities were similar at all sites and across all loci. The results did not show any evidence for major differences in allele frequencies among sites and patterns of allele frequencies were very similar in all populations across all loci. Estimates of population differentiation (FST) were relatively low and most probably largely reflect intra – individual variation for very highly variable loci. Results from nDNA analysis showed evidence for only very limited population genetic structure among sampled S. paramamosain, and a positive and significant association for genetic and geographical distance among sample sites. Microsatellite markers were then employed to determine if adequate levels of genetic diversity has been captured in crab hatcheries for the breeding cycle. The results showed that all microsatellite loci were polymorphic in hatchery samples. Culture populations were in general, highly genetically depauperate, compared with comparable wild populations, with only 3 to 8 alleles recorded for the same loci set per population. In contrast, very high numbers of alleles per locus were found in reference wild S. paramamosain populations, which ranged from 18 to 46 alleles per locus per population. In general, this translates into a 3 to 10 fold decline in mean allelic richness per locus in all culture stocks compared with wild reference counterparts. Furthermore, most loci in all cultured S. paramamosain samples showed departures from HWE equilibrium. Allele frequencies were very different in culture samples from that present in comparable wild reference samples and this in particular, was reflected in a large decline in allele diversity per locus. The pattern observed was best explained by significant impacts of breeding practices employed in hatcheries rather than natural differentiation among wild populations used as the source of brood stock. Recognition of current problems and management strategies for the species both for the medium and long-term development of the new culture industry are discussed. The priority research to be undertaken over the medium term for S. paramamosain should be to close the life cycle fully to allow individuals to be bred on demand and their offspring equalised to control broodstock reproductive contributions. Establishing a broodstock register and pedigree mating system will be required before any selection program is implemented. This will ensure that sufficient genetic variation will be available to allow genetic gains to be sustainably achieved in a future stock improvement program. A fundamental starting point to improve hatchery practices will be to encourage farmers and hatchery managers to spawn more females in their hatcheries as it will increase background genetic diversity in culture stocks. Combining crablet cohorts from multiple hatcheries into a single cohort for supply to farmers or rotation of breeding females regularly in hatcheries will help to address immediate genetic diversity problems in culture stocks. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations more efficiently. Over the long-term, application of data on genetic diversity in wild and cultured stocks of Asian mud crab will contribute to development of sustainable and productive culture industries in Vietnam and other countries in the IWP and can contribute towards conservation of wild genetic resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic variation is the resource animal breeders exploit in stock improvement programs. Both the process of selection and husbandry practices employed in aquaculture will erode genetic variation levels overtime, hence the critical resource can be lost and this may compromise future genetic gains in breeding programs. The amount of genetic variation in five lines of Sydney Rock Oyster (SRO) that had been selected for QX (Queensland unknown) disease resistance were examined and compared with that in a wild reference population using seven specific SRO microsatellite loci. The five selected lines had significantly lower levels of genetic diversity than did the wild reference population with allelic diversity declining approximately 80%, but impacts on heterozygosity per locus were less severe. Significant deficiencies in heterozygotes were detected at six of the seven loci in both mass selected lines and the wild reference population. Against this trend however, a significant excess of heterozygotes was recorded at three loci Sgo9, Sgo14 and Sgo21 in three QX disease resistant lines (#2, #5 and #13). All populations were significantly genetic differentiated from each other based on pairwise FST values. A neighbour joining tree based on DA genetic distances showed a clear separation between all culture and wild populations. Results of this study show clearly, that the impacts of the stock improvement program for SRO has significantly eroded natural levels of genetic variation in the culture lines. This could compromise long-term genetic gains and affect sustainability of the SRO breeding program over the long-term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sutchi catfish (Pangasianodon hypophthalmus) – known more universally by the Vietnamese name ‘Tra’ is an economically important freshwater fish in the Mekong Delta in Vietnam that constitutes an important food resource. Artificial propagation technology for Tra catfish has only recently been developed along the main branches of the Mekong River where more than 60% of the local human population participate in fishing or aquaculture. Extensive support for catfish culture in general, and that of Tra (P. hypophthalmus) in particular, has been provided by the Vietnamese government to increase both the scale of production and to develop international export markets. In 2006, total Vietnamese catfish exports reached approximately 286,602 metric tons (MT) and were valued at 736.87 $M with a number of large new export destinations being developed. Total value of production from catfish culture has been predicted to increase to approximately USD 1 billion by 2020. While freshwater catfish culture in Vietnam has a promising future, concerns have been raised about long-term quality of fry and the effectiveness of current brood stock management practices, issues that have been largely neglected to date. In this study, four DNA markers (microsatellite loci: CB4, CB7, CB12 and CB13) that were developed specifically for Tra (P. hypophthalmus) in an earlier study were applied to examine the genetic quality of artificially propagated Tra fry in the Mekong Delta in Vietnam. The goals of the study were to assess: (i) how well available levels of genetic variation in Tra brood stock used for artificial propagation in the Mekong Delta of Vietnam (breeders from three private hatcheries and Research Institute of Aquaculture No2 (RIA2) founders) has been conserved; and (ii) whether or not genetic diversity had declined significantly over time in a stock improvement program for Tra catfish at RIA2. A secondary issue addressed was how genetic markers could best be used to assist industry development. DNA was extracted from fins of catfish collected from the two main branches of the Mekong River inf Vietnam, three private hatcheries and samples from the Tra improvement program at RIA2. Study outcomes: i) Genetic diversity estimates for Tra brood stock samples were similar to, and slightly higher than, wild reference samples. In addition, the relative contribution by breeders to fry in commercial private hatcheries strongly suggest that the true Ne is likely to be significantly less than the breeder numbers used; ii) in a stock improvement program for Tra catfish at RIA2, no significant differences were detected in gene frequencies among generations (FST=0.021, P=0.036>0.002 after Bonferroni correction); and only small differences were observed in alleles frequencies among sample populations. To date, genetic markers have not been applied in the Tra catfish industry, but in the current project they were used to evaluate the levels of genetic variation in the Tra catfish selective breeding program at RIA2 and to undertake genetic correlations between genetic marker and trait variation. While no associations were detected using only four loci, they analysis provided training in the practical applications of the use of molecular markers in aquaculture in general, and in Tra culture, in particular.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One important challenge for regenerative medicine is to produce a clinically relevant number of cells with consistent tissue-forming potential. Isolation and expansion of cells from skeletal tissues results in a heterogeneous population of cells with variable regenerative potential. A more consistent tissue formation could be achieved by identification and selection of potent progenitors based on cell surface molecules. In this study, we assessed the expression of stage-specific embryonic antigen-4 (SSEA-4), a classic marker of undifferentiated stem cells, and other surface markers in human articular chondrocytes (hACs), osteoblasts, and bone marrow-derived mesenchymal stromal cells (bmMSCs) and characterized their differentiation potential. Further, we sorted SSEA-4-expressing hACs and followed their potential to proliferate and to form cartilage in vitro. Cells isolated from cartilage and bone exhibited remarkably heterogeneous SSEA-4 expression profiles in expansion cultures. SSEA-4 expression levels increased up to approximately 5 population doublings, but decreased following further expansion and differentiation cultures; levels were not related to the proliferation state of the cells. Although SSEA-4-sorted chondrocytes showed a slightly better chondrogenic potential than their SSEA-4-negative counterparts, differences were insufficient to establish a link between SSEA-4 expression and chondrogenic potential. SSEA-4 levels in bmMSCs also did not correlate to the cells' chondrogenic and osteogenic potential in vitro. SSEA-4 is clearly expressed by subpopulations of proliferating somatic cells with a MSC-like phenotype. However, the predictive value of SSEA-4 as a specific marker of superior differentiation capacity in progenitor cell populations from adult human tissue and even its usefulness as a stem cell marker appears questionable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the current study was to estimate heritabilities and correlations for body traits at different ages (Weeks 10 and 18 after stocking) in a giant freshwater prawn (Macrobrachium rosenbergii) population selected for fast growth rate in Vietnam. The dataset consisted of 4650 body records (2432 and 2218 records collected at Weeks 10 and 18, respectively) in the full pedigree comprising a total of 18 387 records. Variance and covariance components were estimated using restricted maximum likelihood fitting a multi-trait animal model. Estimates of heritability for body traits (bodyweight, body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width) were moderate and ranged from 0.06 to 0.11 and from 0.11 to 0.22 at Weeks 10 and 18, respectively. Body-trait heritabilities estimated at Week 10 were not significantly lower than at Week 18. Genetic correlations between body traits within age and genetic correlations for body traits between ages were generally high. Our results suggested that selection for high growth rate in GFP can be undertaken successfully before full market size has been reached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated expression of tumour necrosis factora (TNF-a) is associated with adverse pregnancy outcome. This study has examined the expression of TNF-a and its receptors (TNF-Rs) by mouse blastocysts and blastocyst outgrowths from day 4 to 9.5 of pregnancy and investigated the effects of elevated TNF-a on the inner cell mass (ICM) and trophoblast cells of blastocyst outgrowths. RTPCR demonstrated TNF-a mRNA expression from day 7.5 to 9.5, TNF-R1 from day 6.5 to 9.5 and TNF-R2 from day 5.5 to 7.5 of pregnancy, and in situ hybridisation revealed the trophoblast giant cells (TGCs) of the early placenta as the site of TNF-a expression. Day 4 blastocysts were cultured in a physiologically high concentration of TNF-a (100 ng/ml) for 72 h to the outgrowth stage and then compared to blastocysts cultured in media alone. TNF-a-treated blastocyst outgrowths exhibited a significant reduction in ICM cells (mean € SD 23.90€10.42 vs 9.37€7.45, t-test, P<0.0001) with no significant change in the numbers of trophoblast cells (19.97€8.14 vs 21.73€7.79, t-test, P=0.39). Within the trophoblast cell population, the TNF-a-treated outgrowths exhibited a significant increase in multinucleated cells (14.10€5.53 vs 6.37€5.80, t-test, P<0.0001) and a corresponding significant decrease in mononucleated cells (5.87€3.60 vs 15.37€5.87, t-test, P<0.0001). In summary, this study describes the expression of TNF-a and its receptors during the peri-implantation period in the mouse. It also reports that elevated TNF-a restricts ICM proliferation in the blastocyst and changes the ratio of mononucleated to multinucleated trophoblast cells. These findings suggest a mechanism by which increased

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International evidence on the cost and effects of interventions for reducing the global burden of depression remain scarce. Aims: To estimate the population-level cost-effectiveness of evidence-based depression interventions and their contribution towards reducing current burden. Method: Primary-care-based depression interventions were modelled at the level of whole populations in 14 epidemiological subregions of the world. Total population-level costs (in international dollars or I$) and effectiveness (disability adjusted life years (DALYs) averted) were combined to form average and incremental cost-effectiveness ratios. Results: Evaluated interventions have the potential to reduce the current burden of depression by 10–30%. Pharmacotherapy with older antidepressant drugs, with or without proactive collaborative care, are currently more cost-effective strategies than those using newer antidepressants, particularly in lower-income subregions. Conclusions: Even in resource-poor regions, each DALYaverted by efficient depression treatments in primary care costs less than 1 year of average per capita income, making such interventions a cost-effective use of health resources. However, current levels of burden can only be reduced significantlyif there is a substantialincrease substantial increase intreatment coverage.