409 resultados para Covariance structure

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial data analysis has become more and more important in the studies of ecology and economics during the last decade. One focus of spatial data analysis is how to select predictors, variance functions and correlation functions. However, in general, the true covariance function is unknown and the working covariance structure is often misspecified. In this paper, our target is to find a good strategy to identify the best model from the candidate set using model selection criteria. This paper is to evaluate the ability of some information criteria (corrected Akaike information criterion, Bayesian information criterion (BIC) and residual information criterion (RIC)) for choosing the optimal model when the working correlation function, the working variance function and the working mean function are correct or misspecified. Simulations are carried out for small to moderate sample sizes. Four candidate covariance functions (exponential, Gaussian, Matern and rational quadratic) are used in simulation studies. With the summary in simulation results, we find that the misspecified working correlation structure can still capture some spatial correlation information in model fitting. When the sample size is large enough, BIC and RIC perform well even if the the working covariance is misspecified. Moreover, the performance of these information criteria is related to the average level of model fitting which can be indicated by the average adjusted R square ( [GRAPHICS] ), and overall RIC performs well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Ecological data sets often use clustered measurements or use repeated sampling in a longitudinal design. Choosing the correct covariance structure is an important step in the analysis of such data, as the covariance describes the degree of similarity among the repeated observations. 2. Three methods for choosing the covariance are: the Akaike information criterion (AIC), the quasi-information criterion (QIC), and the deviance information criterion (DIC). We compared the methods using a simulation study and using a data set that explored effects of forest fragmentation on avian species richness over 15 years. 3. The overall success was 80.6% for the AIC, 29.4% for the QIC and 81.6% for the DIC. For the forest fragmentation study the AIC and DIC selected the unstructured covariance, whereas the QIC selected the simpler autoregressive covariance. Graphical diagnostics suggested that the unstructured covariance was probably correct. 4. We recommend using DIC for selecting the correct covariance structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maternal and infant mortality is a global health issue with a significant social and economic impact. Each year, over half a million women worldwide die due to complications related to pregnancy or childbirth, four million infants die in the first 28 days of life, and eight million infants die in the first year. Ninety-nine percent of maternal and infant deaths are in developing countries. Reducing maternal and infant mortality is among the key international development goals. In China, the national maternal mortality ratio and infant mortality rate were reduced greatly in the past two decades, yet a large discrepancy remains between urban and rural areas. To address this problem, a large-scale Safe Motherhood Programme was initiated in 2000. The programme was implemented in Guangxi in 2003. Interventions in the programme included both demand-side and supply side-interventions focusing on increasing health service use and improving birth outcomes. Little is known about the effects and economic outcomes of the Safe Motherhood Programme in Guangxi, although it has been implemented for seven years. The aim of this research is to estimate the effectiveness and cost-effectiveness of the interventions in the Safe Motherhood Programme in Guangxi, China. The objectives of this research include: 1. To evaluate whether the changes of health service use and birth outcomes are associated with the interventions in the Safe Motherhood Programme. 2. To estimate the cost-effectiveness of the interventions in the Safe Motherhood Programme and quantify the uncertainty surrounding the decision. 3. To assess the expected value of perfect information associated with both the whole decision and individual parameters, and interpret the findings to inform priority setting in further research and policy making in this area. A quasi-experimental study design was used in this research to assess the effectiveness of the programme in increasing health service use and improving birth outcomes. The study subjects were 51 intervention counties and 30 control counties. Data on the health service use, birth outcomes and socio-economic factors from 2001 to 2007 were collected from the programme database and statistical yearbooks. Based on the profile plots of the data, general linear mixed models were used to evaluate the effectiveness of the programme while controlling for the effects of baseline levels of the response variables, change of socio-economic factors over time and correlations among repeated measurements from the same county. Redundant multicollinear variables were deleted from the mixed model using the results of the multicollinearity diagnoses. For each response variable, the best covariance structure was selected from 15 alternatives according to the fit statistics including Akaike information criterion, Finite-population corrected Akaike information criterion, and Schwarz.s Bayesian information criterion. Residual diagnostics were used to validate the model assumptions. Statistical inferences were made to show the effect of the programme on health service use and birth outcomes. A decision analytic model was developed to evaluate the cost-effectiveness of the programme, quantify the decision uncertainty, and estimate the expected value of perfect information associated with the decision. The model was used to describe the transitions between health states for women and infants and reflect the change of both costs and health benefits associated with implementing the programme. Result gained from the mixed models and other relevant evidence identified were synthesised appropriately to inform the input parameters of the model. Incremental cost-effectiveness ratios of the programme were calculated for the two groups of intervention counties over time. Uncertainty surrounding the parameters was dealt with using probabilistic sensitivity analysis, and uncertainty relating to model assumptions was handled using scenario analysis. Finally the expected value of perfect information for both the whole model and individual parameters in the model were estimated to inform priority setting in further research in this area.The annual change rates of the antenatal care rate and the institutionalised delivery rate were improved significantly in the intervention counties after the programme was implemented. Significant improvements were also found in the annual change rates of the maternal mortality ratio, the infant mortality rate, the incidence rate of neonatal tetanus and the mortality rate of neonatal tetanus in the intervention counties after the implementation of the programme. The annual change rate of the neonatal mortality rate was also improved, although the improvement was only close to statistical significance. The influences of the socio-economic factors on the health service use indicators and birth outcomes were identified. The rural income per capita had a significant positive impact on the health service use indicators, and a significant negative impact on the birth outcomes. The number of beds in healthcare institutions per 1,000 population and the number of rural telephone subscribers per 1,000 were found to be positively significantly related to the institutionalised delivery rate. The length of highway per square kilometre negatively influenced the maternal mortality ratio. The percentage of employed persons in the primary industry had a significant negative impact on the institutionalised delivery rate, and a significant positive impact on the infant mortality rate and neonatal mortality rate. The incremental costs of implementing the programme over the existing practice were US $11.1 million from the societal perspective, and US $13.8 million from the perspective of the Ministry of Health. Overall, 28,711 life years were generated by the programme, producing an overall incremental cost-effectiveness ratio of US $386 from the societal perspective, and US $480 from the perspective of the Ministry of Health, both of which were below the threshold willingness-to-pay ratio of US $675. The expected net monetary benefit generated by the programme was US $8.3 million from the societal perspective, and US $5.5 million from the perspective of the Ministry of Health. The overall probability that the programme was cost-effective was 0.93 and 0.89 from the two perspectives, respectively. The incremental cost-effectiveness ratio of the programme was insensitive to the different estimates of the three parameters relating to the model assumptions. Further research could be conducted to reduce the uncertainty surrounding the decision, in which the upper limit of investment was US $0.6 million from the societal perspective, and US $1.3 million from the perspective of the Ministry of Health. It is also worthwhile to get a more precise estimate of the improvement of infant mortality rate. The population expected value of perfect information for individual parameters associated with this parameter was US $0.99 million from the societal perspective, and US $1.14 million from the perspective of the Ministry of Health. The findings from this study have shown that the interventions in the Safe Motherhood Programme were both effective and cost-effective in increasing health service use and improving birth outcomes in rural areas of Guangxi, China. Therefore, the programme represents a good public health investment and should be adopted and further expanded to an even broader area if possible. This research provides economic evidence to inform efficient decision making in improving maternal and infant health in developing countries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and aims: Lower-limb lymphoedema is a serious and feared sequela after treatment for gynaecological cancer. Given the limited prospective data on incidence of and risk factors for lymphoedema after treatment for gynaecological cancer we initiated a prospective cohort study in 2008. Methods: Data were available for 353 women with malignant disease. Participants were assessed before treatment and at regular intervals after treatment for two years. Follow-up visits were grouped into time-periods of six weeks to six months (time 1), nine months to 15 months (time 2), and 18 months to 24 months (time 3). Preliminary data analyses were undertaken up to time 2 using generalised estimating equations to model the repeated measures data of Functional Assessment of Cancer Therapy-General (FACT-G) quality of life (QoL) scores and self-reported swelling at each follow-up period (best-fitting covariance structure). Results: Depending on the time-period, between 30% and 40% of patients self-reported swelling of the lower limb. The QoL of those with self-reported swelling was lower at all time-periods compared with those who did not have swelling. Mean (95% CI) FACT-G scores at time 0, 1 and 2 were 80.7 (78.2, 83.2), 83.0 (81.0, 85.0) and 86.3 (84.2, 88.4), respectively for those with swelling and 85.0 (83.0, 86.9), 86.0 (84.1, 88.0) and 88.9 (87.0, 90.7), respectively for those without swelling. Conclusions: Lower-limb swelling adversely influences QoL and change in QoL over time in patients with gynaecological cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selecting an appropriate working correlation structure is pertinent to clustered data analysis using generalized estimating equations (GEE) because an inappropriate choice will lead to inefficient parameter estimation. We investigate the well-known criterion of QIC for selecting a working correlation Structure. and have found that performance of the QIC is deteriorated by a term that is theoretically independent of the correlation structures but has to be estimated with an error. This leads LIS to propose a correlation information criterion (CIC) that substantially improves the QIC performance. Extensive simulation studies indicate that the CIC has remarkable improvement in selecting the correct correlation structures. We also illustrate our findings using a data set from the Madras Longitudinal Schizophrenia Study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stationary processes are random variables whose value is a signal and whose distribution is invariant to translation in the domain of the signal. They are intimately connected to convolution, and therefore to the Fourier transform, since the covariance matrix of a stationary process is a Toeplitz matrix, and Toeplitz matrices are the expression of convolution as a linear operator. This thesis utilises this connection in the study of i) efficient training algorithms for object detection and ii) trajectory-based non-rigid structure-from-motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed double-decker Eu\[Pc(15C5)4](TPP) (1) was obtained by base-catalysed tetramerisation of 4,5-dicyanobenzo-15-crown-5 using the half-sandwich complex Eu(TPP)(acac) (acac = acetylacetonate), generated in situ, as the template. For comparative studies, the mixed triple-decker complexes Eu2\[Pc(15C5)4](TPP)2 (2) and Eu2\[Pc(15C5)4]2(TPP) (3) were also synthesised by the raise-by-one-story method. These mixed ring sandwich complexes were characterised by various spectroscopic methods. Up to four one-electron oxidations and two one-electron reductions were revealed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). As shown by electronic absorption and infrared spectroscopy, supramolecular dimers (SM1 and SM3) were formed from the corresponding double-decker 1 and triple-decker 3 in the presence of potassium ions in MeOH/CHCl3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.