7 resultados para Cornell University
em Queensland University of Technology - ePrints Archive
Resumo:
The traditional decomposition of the gender wage gap distinguishes between a component attributable to gender differences in productivity-related characteristics and a residual component that is often taken as a measure of discrimination. This study of data from the 1989 Canadian Labour Market Activity Survey shows that when occupation is treated as a productivity-related characteristic, the proportion of the gender wage gap labeled explained increases with the number of occupational classifications distinguished. However, on the basis of evidence that occupational differences reflect the presence of barriers faced by women attempting to enter male-dominated occupations, the authors conclude that occupation should not be treated as a productivity-related characteristic; and in a decomposition of the gender wage gap that treats occupation as endogenously determined, they find that the level of occupational aggregation has little effect on the size of the "explained" component of the gap.
Resumo:
Using data from the 1989 Canadian Labour Market Activity Survey and, for Australia, the 1989-90 Income Distribution Survey, the authors investigate the reasons for the significantly lower gender wage gap in Australia than in Canada. Key similarities and differences between these two countries, the authors argue, make them a good basis for a "natural experiment" to investigate the effects of different labor market institutions. In particular, Australia has a stronger union movement and a greater degree of centralization in wage determination than Canada, and most of its workers are covered by legally binding minimum working conditions. The authors conclude that several differences between the countries in labor market structure-notably, a lower rate of return to education, a lower rate of return to labor market experience, and a lower level of wage inequality in Australia than in Canada- are largely responsible for the smaller gender wage gap in Australia.
Resumo:
In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates.
Resumo:
Queensland University of Technology (QUT) Library offers a range of resources and services to researchers as part of their research support portfolio. This poster will present key features of two of the data management services offered by research support staff at QUT Library. The first service is QUT Research Data Finder (RDF), a product of the Australian National Data Service (ANDS) funded Metadata Stores project. RDF is a data registry (metadata repository) that aims to publicise datasets that are research outputs arising from completed QUT research projects. The second is a software and code registry, which is currently under development with the sole purpose of improving discovery of source code and software as QUT research outputs. RESEARCH DATA FINDER As an integrated metadata repository, Research Data Finder aligns with institutional sources of truth, such as QUT’s research administration system, ResearchMaster, as well as QUT’s Academic Profiles system to provide high quality data descriptions that increase awareness of, and access to, shareable research data. The repository and its workflows are designed to foster better data management practices, enhance opportunities for collaboration and research, promote cross-disciplinary research and maximise the impact of existing research data sets. SOFTWARE AND CODE REGISTRY The QUT Library software and code registry project stems from concerns amongst researchers with regards to development activities, storage, accessibility, discoverability and impact, sharing, copyright and IP ownership of software and code. As a result, the Library is developing a registry for code and software research outputs, which will use existing Research Data Finder architecture. The underpinning software for both registries is VIVO, open source software developed by Cornell University. The registry will use the Research Data Finder service instance of VIVO and will include a searchable interface, links to code/software locations and metadata feeds to Research Data Australia. Key benefits of the project include:improving the discoverability and reuse of QUT researchers’ code and software amongst QUT and the QUT research community; increasing the profile of QUT research outputs on a national level by providing a metadata feed to Research Data Australia, and; improving the metrics for access and reuse of code and software in the repository.
Resumo:
QUT Software Finder is a searchable repository of metadata describing software and source code, which has been created as a result of QUT research activities. It was launched in December 2013. https://researchdatafinder.qut.edu.au/scf The registry was designed to aid the discovery and visibility of QUT research outputs and encourage sharing and re-use of code and software throughout the research community, both nationally and internationally. The repository platform used is VIVO (an open source product initially developed at Cornell University). QUT Software Finder records that describe software or code are connected to information about researchers involved, the research groups, related publications and related projects. Links to where the software or code can be accessed from are also provided alongside licencing and re-use information.
Resumo:
On 19 June 2015, representatives from over 40 Australian research institutions gathered in Canberra to launch their Open Data Collections. The one day event, hosted by the Australian National Data Service (ANDS), showcased to government and a range of national stakeholders the rich variety of data collections that have been generated through the Major Open Data Collections (MODC) project. Colin Eustace attended the showcase for QUT Library and presented a poster that reflected the work that he and Jodie Vaughan generated through the project. QUT’s Blueprint 4, the University’s five-year institutional strategic plan, outlines the key priorities of developing a commitment to working in partnership with industry, as well as combining disciplinary strengths with interdisciplinary application. The Division of Technology, Information and Learning Support (TILS) has undertaken a number of Australian National Data Service (ANDS) funded projects since 2009 with the aim of developing improved research data management services within the University to support these strategic aims. By leveraging existing tools and systems developed during these projects, the Major Open Data Collection (MODC) project delivered support to multi-disciplinary collaborative research activities through partnership building between QUT researchers and Queensland government agencies, in order to add to and promote the discovery and reuse of a collection of spatially referenced datasets. The MODC project built upon existing Research Data Finder infrastructure (which uses VIVO open source software, developed by Cornell University) to develop a separate collection, Spatial Data Finder (https://researchdatafinder.qut.edu.au/spatial) as the interface to display the spatial data collection. During the course of the project, 62 dataset descriptions were added to Spatial Data Finder, 7 added to Research Data Finder and two added to Software Finder, another separate collection. The project team met with 116 individual researchers and attended 13 school and faculty meetings to promote the MODC project and raise awareness of the Library’s services and resources for research data management.