6 resultados para Cordia ecalyculata Vell
em Queensland University of Technology - ePrints Archive
Resumo:
China continues to face great challenges in meeting the health needs of its large population. The challenges are not just lack of resources, but also how to use existing resources more efficiently, more effectively, and more equitably. Now a major unaddressed challenge facing China is how to reform an inefficient, poorly organized health care delivery system. The objective of this study is to analyze the role of private health care provision in China and discuss the implications of increasing private-sector development for improving health system performance. This study is based on an extensive literature review, the purpose of which was to identify, summarize, and evaluate ideas and information on private health care provision in China. In addition, the study uses secondary data analysis and the results of previous study by the authors to highlight the current situation of private health care provision in one province of China. This study found that government-owned hospitals form the backbone of the health care system and also account for most health care service provision. However, even though the public health care system is constantly trying to adapt to population needs and improve its performance, there are many problems in the system, such as limited access, low efficiency, poor quality, cost inflation, and low patient satisfaction. Currently, private hospitals are relatively rare, and private health care as an important component of the health care system in China has received little policy attention. It is argued that policymakers in China should recognize the role of private health care provision for health system performance, and then define and achieve an appropriate role for private health care provision in helping to respond to the many challenges facing the health system in present-day China.
Resumo:
BACKGROUND: Although many studies have shown that high temperatures are associated with an increased risk of mortality and morbidity, there has been little research on managing the process of planned adaptation to alleviate the health effects of heat events and climate change. In particular, economic evaluation of public health adaptation strategies has been largely absent from both the scientific literature and public policy discussion. OBJECTIVES: his paper aims to discuss how public health organizations should implement adaptation strategies, and how to improve the evidence base for policies to protect health from heat events and climate change. DISCUSSION: Public health adaptation strategies to cope with heat events and climate change fall into two categories: reducing the heat exposure and managing the health risks. Strategies require a range of actions, including timely public health and medical advice, improvements to housing and urban planning, early warning systems, and the assurance that health care and social systems are ready to act. Some of these actions are costly, and the implementation should be based on the cost-effectiveness analysis given scarce financial resources. Therefore, research is required not only on the temperature-related health costs, but also on the costs and benefits of adaptation options. The scientific community must ensure that the health co-benefits of climate change policies are recognized, understood and quantified. CONCLUSIONS: The integration of climate change adaptation into current public health practice is needed to ensure they increase future resilience. The economic evaluation of temperature-related health costs and public health adaptation strategies are particularly important for policy decisions.
Resumo:
In earlier cultures and societies, hazards and risks to human health were dealt with by methods derived from myth, metaphor and ritual. In modem society however, notions of hazard and risk have been transformed from the level of a folk discourse to that of an expert centred concept (Plough & Krimsky, 1987). With the professionalization of risk and hazard analysis came a preferred framework for decision making based on a range of 'technical' methodologies (Giere, 1991 ). This is especially true for decision processes relating to risk assessment and management, and impact assessment. Such approaches however, often entail narrow technical-based theoretical assumptions about human behaviour and the natural world, and the· methods used. They therefore carry 'in-built' error factors that contribute considerable uncertainty to the results.
Resumo:
Seasonal patterns in mortality have been recognised for decades, with a marked excess of deaths in winter, yet our understanding of the causes of this phenomenon is not yet complete. Research has shown that low and high temperatures are associated with increased mortality independently of season; however, the impact of unseasonal weather on mortality has been less studied. In this study, we aimed to determine if unseasonal patterns in weather were associated with unseasonal patterns in mortality. We obtained daily temperature, humidity and mortality data from 1988 to 2009 for five major Australian cities with a range of climates. We split the seasonal patterns in temperature, humidity and mortality into their stationary and non-stationary parts. A stationary seasonal pattern is consistent from year-to-year, and a non-stationary pattern varies from year-to-year. We used Poisson regression to investigate associations between unseasonal weather and an unusual number of deaths. We found that deaths rates in Australia were 20–30% higher in winter than summer. The seasonal pattern of mortality was non-stationary, with much larger peaks in some winters. Winters that were colder or drier than a typical winter had significantly increased death risks in most cities. Conversely summers that were warmer or more humid than average showed no increase in death risks. Better understanding the occurrence and cause of seasonal variations in mortality will help with disease prevention and save lives.
Resumo:
This study examined the short-term effects of temperature on cardiovascular hospital admissions (CHA) in the largest tropical city in Southern Vietnam. We applied Poisson time-series regression models with Distributed Lag Non-Linear Model (DLNM) to examine the temperature-CHA association while adjusting for seasonal and long-term trends, day of the week, holidays, and humidity. The threshold temperature and added effects of heat waves were also evaluated. The exposure-response curve of temperature-CHA reveals a J-shape relationship with a threshold temperature of 29.6 °C. The delayed effects temperature-CHA lasted for a week (0–5 days). The overall risk of CHA increased 12.9% (RR, 1.129; 95%CI, 0.972–1.311) during heatwave events, which were defined as temperature ≥ the 99th percentile for ≥2 consecutive days. The modification roles of gender and age were inconsistent and non-significant in this study. An additional prevention program that reduces the risk of cardiovascular disease in relation to high temperatures should be developed.
Resumo:
The association between temperatures and risk of cardiovascular mortality has been recognized but the association drawn from previous meta-analysis was weak due to the lack of sufficient studies. This paper presented a review with updated reports in the literature about the risk of cardiovascular hospitalization in relation to different temperature exposures and examined the dose–response relationship of temperature-cardiovascular hospitalization by change in units of temperature, latitudes, and lag days. The pooled effect sizes were calculated for cold, heat, heatwave, and diurnal variation using random-effects meta-analysis, and the dose–response relationship of temperature-cardiovascular admission was modelled using random-effect meta-regression. The Cochrane Q-test and index of heterogeneity (I2) were used to evaluate heterogeneity, and Egger's test was used to evaluate publication bias. Sixty-four studies were included in meta-analysis. The pooled results suggest that for a change in temperature condition, the risk of cardiovascular hospitalization increased 2.8% (RR, 1.028; 95% CI, 1.021–1.035) for cold exposure, 2.2% (RR, 1.022; 95% CI, 1.006–1.039) for heatwave exposure, and 0.7% (RR, 1.007; 95% CI, 1.002–1.012) for an increase in diurnal temperature. However no association was observed for heat exposure. The significant dose–response relationship of temperature — cardiovascular admission was found with cold exposure and diurnal temperature. Increase in one-day lag caused a marginal reduction in risk of cardiovascular hospitalizations for cold exposure and diurnal variation, and increase in latitude was associated with a decrease in risk of cardiovascular hospitalizations for diurnal temperature only. There is a significant short-term effect of cold exposure, heatwave and diurnal variation on cardiovascular hospitalizations. Further research is needed to understand the temperature-cardiovascular relationship for different climate areas.