807 resultados para Conserved Role

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of the HtrA inhibitor JO146 previously enabled us to demonstrate an essential function for HtrA during the mid-replicative phase of the Chlamydia trachomatis developmental cycle. Here we extend our investigations to other members of the Chlamydia genus. C. trachomatis isolates with distinct replicative phase growth kinetics showed significant loss of viable infectious progeny after HtrA was inhibited during the replicative phase. Mid-replicative phase addition of JO146 was also significantly detrimental to Chlamydia pecorum, Chlamydia suis and Chlamydia cavie. These data combined indicate that HtrA has a conserved critical role during the replicative phase of the chlamydial developmental cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin A deficiency (VAD) is a serious problem in developing countries, affecting approximately 127 million children of preschool age and 7.2 million pregnant women each year. However, this deficiency is readily treated and prevented through adequate nutrition. This can potentially be achieved through genetically engineered biofortification of staple food crops to enhance provitamin A (pVA) carotenoid content. Bananas are the fourth most important food crop with an annual production of 100 million tonnes and are widely consumed in areas affected by VAD. However, the fruit pVA content of most widely consumed banana cultivars is low (~ 0.2 to 0.5 ìg/g dry weight). This includes cultivars such as the East African highland banana (EAHB), the staple crop in countries such as Uganda, where annual banana consumption is approximately 250 kg per person. This fact, in addition to the agronomic properties of staple banana cultivars such as vegetative reproduction and continuous cropping, make bananas an ideal target for pVA enhancement through genetic engineering. Interestingly, there are banana varieties known with high fruit pVA content (up to 27.8 ìg/g dry weight), although they are not widely consumed due to factors such as cultural preference and availability. The genes involved in carotenoid accumulation during banana fruit ripening have not been well studied and an understanding of the molecular basis for the differential capacity of bananas to accumulate carotenoids may impact on the effective production of genetically engineered high pVA bananas. The production of phytoene by the enzyme phytoene synthase (PSY) has been shown to be an important rate limiting determinant of pVA accumulation in crop systems such as maize and rice. Manipulation of this gene in rice has been used successfully to produce Golden Rice, which exhibits higher seed endosperm pVA levels than wild type plants. Therefore, it was hypothesised that differences between high and low pVA accumulating bananas could be due either to differences in PSY enzyme activity or factors regulating the expression of the psy gene. Therefore, the aim of this thesis was to investigate the role of PSY in accumulation of pVA in banana fruit of representative high (Asupina) and low (Cavendish) pVA banana cultivars by comparing the nucleic acid and encoded amino acid sequences of the banana psy genes, in vivo enzyme activity of PSY in rice callus and expression of PSY through analysis of promoter activity and mRNA levels. Initially, partial sequences of the psy coding region from five banana cultivars were obtained using reverse transcriptase (RT)-PCR with degenerate primers designed to conserved amino acids in the coding region of available psy sequences from other plants. Based on phylogenetic analysis and comparison to maize psy sequences, it was found that in banana, psy occurs as a gene family of at least three members (psy1, psy2a and psy2b). Subsequent analysis of the complete coding regions of these genes from Asupina and Cavendish suggested that they were all capable of producing functional proteins due to high conservation in the catalytic domain. However, inability to obtain the complete mRNA sequences of Cavendish psy2a, and isolation of two non-functional Cavendish psy2a coding region variants, suggested that psy2a expression may be impaired in Cavendish. Sequence analysis indicated that these Cavendish psy2a coding region variants may have resulted from alternate splicing. Evidence of alternate splicing was also observed in one Asupina psy1 coding region variant, which was predicted to produce a functional PSY1 isoform. The complete mRNA sequence of the psy2b coding regions could not be isolated from either cultivar. Interestingly, psy1 was cloned predominantly from leaf while psy2 was obtained preferentially from fruit, suggesting some level of tissue-specific expression. The Asupina and Cavendish psy1 and psy2a coding regions were subsequently expressed in rice callus and the activity of the enzymes compared in vivo through visual observation and quantitative measurement of carotenoid accumulation. The maize B73 psy1 coding region was included as a positive control. After several weeks on selection, regenerating calli showed a range of colours from white to dark orange representing various levels of carotenoid accumulation. These results confirmed that the banana psy coding regions were all capable of producing functional enzymes. No statistically significant differences in levels of activity were observed between banana PSYs, suggesting that differences in PSY activity were not responsible for differences in the fruit pVA content of Asupina and Cavendish. The psy1 and psy2a promoter sequences were isolated from Asupina and Cavendish gDNA using a PCR-based genome walking strategy. Interestingly, three Cavendish psy2a promoter clones of different sizes, representing possible allelic variants, were identified while only single promoter sequences were obtained for the other Asupina and Cavendish psy genes. Bioinformatic analysis of these sequences identified motifs that were previously characterised in the Arabidopsis psy promoter. Notably, an ATCTA motif associated with basal expression in Arabidopsis was identified in all promoters with the exception of two of the Cavendish psy2a promoter clones (Cpsy2apr2 and Cpsy2apr3). G1 and G2 motifs, linked to light-regulated responses in Arabidopsis, appeared to be differentially distributed between psy1 and psy2a promoters. In the untranscribed regulatory regions, the G1 motifs were found only in psy1 promoters, while the G2 motifs were found only in psy2a. Interestingly, both ATCTA and G2 motifs were identified in the 5’ UTRs of Asupina and Cavendish psy1. Consistent with other monocot promoters, introns were present in the Asupina and Cavendish psy1 5’ UTRs, while none were observed in the psy2a 5’ UTRs. Promoters were cloned into expression constructs, driving the â-glucuronidase (GUS) reporter gene. Transient expression of the Asupina and Cavendish psy1 and psy2a promoters in both Cavendish embryogenic cells and Cavendish fruit demonstrated that all promoters were active, except Cpsy2apr2 and Cpsy2apr3. The functional Cavendish psy2a promoter (Cpsy2apr1) appeared to have activity similar to the Asupina psy2a promoter. The activities of the Asupina and Cavendish psy1 promoters were similar to each other, and comparable to those of the functional psy2a promoters. Semi-quantitative PCR analysis of Asupina and Cavendish psy1 and psy2a transcripts showed that psy2a levels were high in green fruit and decreased during ripening, reinforcing the hypothesis that fruit pVA levels were largely dependent on levels of psy2a expression. Additionally, semi-quantitative PCR using intron-spanning primers indicated that high levels of unprocessed psy2a and psy2b mRNA were present in the ripe fruit of Cavendish but not in Asupina. This raised the possibility that differences in intron processing may influence pVA accumulation in Asupina and Cavendish. In this study the role of PSY in banana pVA accumulation was analysed at a number of different levels. Both mRNA accumulation and promoter activity of psy genes studied were very similar between Asupina and Cavendish. However, in several experiments there was evidence of cryptic or alternate splicing that differed in Cavendish compared to Asupina, although these differences were not conclusively linked to the differences in fruit pVA accumulation between Asupina and Cavendish. Therefore, other carotenoid biosynthetic genes or regulatory mechanisms may be involved in determining pVA levels in these cultivars. This study has contributed to an increased understanding of the role of PSY in the production of pVA carotenoids in banana fruit, corroborating the importance of this enzyme in regulating carotenoid production. Ultimately, this work may serve to inform future research into pVA accumulation in important crop varieties such as the EAHB and the discovery of avenues to improve such crops through genetic modification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Escherichia coli sequence type 131 (ST131) is a globally dominant multidrug resistant clone associated with urinary tract and bloodstream infections. Most ST131 strains exhibit resistance to multiple antibiotics and cause infections associated with limited treatment options. The largest sub-clonal ST131 lineage is resistant to fluoroquinolones, contains the type 1 fimbriae fimH30 allele and expresses an H4 flagella antigen. Flagella are motility organelles that contribute to UPEC colonisation of the upper urinary tract. In this study, we examined the specific role of H4 flagella in ST131 motility and interaction with host epithelial and immune cells. We show that the majority of H4-positive ST131 strains are motile and are enriched for flagella expression during static pellicle growth. We also tested the role of H4 flagella in ST131 through the construction of specific mutants, over-expression strains and isogenic mutants that expressed alternative H1 and H7 flagellar subtypes. Overall, our results revealed that H4, H1 and H7 flagella possess conserved phenotypes with regards to motility, epithelial cell adhesion, invasion and uptake by macrophages. In contrast, H4 flagella trigger enhanced induction of the anti-inflammatory cytokine IL-10 compared to H1 and H7 flagella, a property that may contribute to ST131 fitness in the urinary tract.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research in this thesis focussed on the improvement of agricultural crops in increasing water use efficiency that impacts global crop productivity. The study identified key genetic regulatory mechanisms that the resurrection plant Tripogon loliiformis utilises to tolerate desiccation. Due to the conserved nature of the pathways involved, this information can be transferred for the enhancement of drought tolerance and water use efficiency in agricultural crops. Specifically this study used high throughput sequencing, microscopy and plant transformation to further the understanding of post-transcriptional regulatory mechanisms. It was shown that T. loliiformis uses microRNAs to regulate pro-survival autophagy pathways to tolerate desiccation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teachers' failure to utilise MBL activities more widely may be due to not recognising their capacity to transform the nature of laboratory activities to be more consistent with contemporary constructivist theories of learning. This research aimed to increase understanding of how MBL activities specifically designed to be consistent with a constructivist theory of learning support or constrain student construction of understanding. The first author conducted the research with his Year 11 physics class of 29 students. Dyads completed nine tasks relating to kinematics using a Predict-Observe-Explain format. Data sources included video and audio recordings of students and teacher during four 70-minute sessions, students' display graphs and written notes, semi-structured student interviews, and the teacher's journal. The study identifies the actors and describes the patterns of interactions in the MBL. Analysis of students' discourse and actions identified many instances where students' initial understanding of kinematics were mediated in multiple ways. Students invented numerous techniques for manipulating data in the service of their emerging understanding. The findings are presented as eight assertions. Recommendations are made for developing pedagogical strategies incorporating MBL activities which will likely catalyse student construction of understanding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.