432 resultados para Confined Space Robot

em Queensland University of Technology - ePrints Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Room-temperature, atmospheric-pressure plasma needle treatment is used to effectively minimize the adenovirus (AdV) infectivity as quantified by the dramatic reduction of its gene expression in HEK 293A primary human embryonic kidney cells studied by green fluorescent protein imaging. The AdV titer is reduced by two orders of magnitude within only 8 min of the plasma exposure. This effect is due to longer lifetimes and higher interaction efficacy of the plasma-generated reactive species in confined space exposed to the plasma rather than thermal effects commonly utilized in pathogen inactivation. This generic approach is promising for the next-generation anti-viral treatments and imunotherapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Typically, the walking ability of individuals with a transfemoral amputation (TFA) can be represented by the speed of walking (SofW) obtained in experimental settings. Recent developments in portable kinetic systems allow assessing the level of activity of TFA during actual daily living outside the confined space of a gait lab. Unfortunately, only minimal spatio-temporal characteristics could be extracted from the kinetic data including the cadence and the duration on gait cycles. Therefore, there is a need for a way to use some of these characteristics to assess the instantaneous speed of walking during daily living. The purpose of the study was to compare several methods to determine SofW using minimal spatial gait characteristics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional approaches to the use of machine learning algorithms do not provide a method to learn multiple tasks in one-shot on an embodied robot. It is proposed that grounding actions within the sensory space leads to the development of action-state relationships which can be re-used despite a change in task. A novel approach called an Experience Network is developed and assessed on a real-world robot required to perform three separate tasks. After grounded representations were developed in the initial task, only minimal further learning was required to perform the second and third task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To obtain minimum time or minimum energy trajectories for robots it is necessary to employ planning methods which adequately consider the platform’s dynamic properties. A variety of sampling, graph-based or local receding-horizon optimisation methods have previously been proposed. These typically use simplified kino-dynamic models to avoid the significant computational burden of solving this problem in a high dimensional state-space. In this paper we investigate solutions from the class of pseudospectral optimisation methods which have grown in favour amongst the optimal control community in recent years. These methods have high computational efficiency and rapid convergence properties. We present a practical application of such an approach to the robot path planning problem to provide a trajectory considering the robot’s dynamic properties. We extend the existing literature by augmenting the path constraints with sensed obstacles rather than predefined analytical functions to enable real world application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present our work on tele-operating a complex humanoid robot with the help of bio-signals collected from the operator. The frameworks (for robot vision, collision avoidance and machine learning), developed in our lab, allow for a safe interaction with the environment, when combined. This even works with noisy control signals, such as, the operator’s hand acceleration and their electromyography (EMG) signals. These bio-signals are used to execute equivalent actions (such as, reaching and grasping of objects) on the 7 DOF arm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For future planetary robot missions, multi-robot-systems can be considered as a suitable platform to perform space mission faster and more reliable. In heterogeneous robot teams, each robot can have different abilities and sensor equipment. In this paper we describe a lunar demonstration scenario where a team of mobile robots explores an unknown area and identifies a set of objects belonging to a lunar infrastructure. Our robot team consists of two exploring scout robots and a mobile manipulator. The mission goal is to locate the objects within a certain area, to identify the objects, and to transport the objects to a base station. The robots have a different sensor setup and different capabilities. In order to classify parts of the lunar infrastructure, the robots have to share the knowledge about the objects. Based on the different sensing capabilities, several information modalities have to be shared and combined by the robots. In this work we propose an approach using spatial features and a fuzzy logic based reasoning for distributed object classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particle swarm optimization (PSO), a new population based algorithm, has recently been used on multi-robot systems. Although this algorithm is applied to solve many optimization problems as well as multi-robot systems, it has some drawbacks when it is applied on multi-robot search systems to find a target in a search space containing big static obstacles. One of these defects is premature convergence. This means that one of the properties of basic PSO is that when particles are spread in a search space, as time increases they tend to converge in a small area. This shortcoming is also evident on a multi-robot search system, particularly when there are big static obstacles in the search space that prevent the robots from finding the target easily; therefore, as time increases, based on this property they converge to a small area that may not contain the target and become entrapped in that area.Another shortcoming is that basic PSO cannot guarantee the global convergence of the algorithm. In other words, initially particles explore different areas, but in some cases they are not good at exploiting promising areas, which will increase the search time.This study proposes a method based on the particle swarm optimization (PSO) technique on a multi-robot system to find a target in a search space containing big static obstacles. This method is not only able to overcome the premature convergence problem but also establishes an efficient balance between exploration and exploitation and guarantees global convergence, reducing the search time by combining with a local search method, such as A-star.To validate the effectiveness and usefulness of algorithms,a simulation environment has been developed for conducting simulation-based experiments in different scenarios and for reporting experimental results. These experimental results have demonstrated that the proposed method is able to overcome the premature convergence problem and guarantee global convergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows that by using only symbolic language phrases, a mobile robot can purposefully navigate to specified rooms in previously unexplored environments. The robot intelligently organises a symbolic language description of the unseen environment and “imagines” a representative map, called the abstract map. The abstract map is an internal representation of the topological structure and spatial layout of symbolically defined locations. To perform goal-directed exploration, the abstract map creates a high-level semantic plan to reason about spaces beyond the robot’s known world. While completing the plan, the robot uses the metric guidance provided by a spatial layout, and grounded observations of door labels, to efficiently guide its navigation. The system is shown to complete exploration in unexplored spaces by travelling only 13.3% further than the optimal path.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.