110 resultados para Concrete slabs.

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shrinkage cracking is commonly observed in concrete flat structures such as highway pavements, slabs, and bridge decks. Crack spacing due to shrinkage has received considerable attention for many years [1-3]. However, some aspects concerning the mechanism of crack spacing still remain un-clear. Though it is well known that the interval of the cracks generally falls with a range, no satisfactory explanation has been put forward as to why the minimum spacing exists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical analysis method of cracking in cast-in-place reinforced concrete slabs is presented. T he results agree w ell with the actual conditions. T he current state of knowledge and some new research findings on crack-control are introduced such as increasing the quantities of the distribution steel, adopting fibre reinforced concrete etc. Some recommended crack-control procedures used in design construction is presented based on the investigation and study of cracking in a frame structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bomb attacks carried out by terrorists, targeting high occupancy buildings, have become increasingly common in recent times. Large numbers of casualties and property damage result from overpressure of the blast followed by failing of structural elements. Understanding the blast response of multi-storey buildings and evaluating their remaining life have therefore become important. Response and damage analysis of single structural components, such as columns or slabs, to explosive loads have been examined in the literature, but the studies on blast response and damage analysis of structural frames in multi-storey buildings is limited and this is necessary for assessing the vulnerability of them. This paper investigates the blast response and damage evaluation of reinforced concrete (RC) frames, designed for normal gravity loads, in order to evaluate their remaining life. Numerical modelling and analysis were carried out using the explicit finite element software, LS DYNA. The modelling and analysis takes into consideration reinforcement details together and material performance under higher strain rates. Damage indices for columns are calculated based on their residual and original capacities. Numerical results generated in the can be used to identify relationships between the blast load parameters and the column damage. Damage index curve will provide a simple means for assessing the damage to a typical multi-storey building RC frame under an external bomb circumstance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Damage assessment (damage detection, localization and quantification) in structures and appropriate retrofitting will enable the safe and efficient function of the structures. In this context, many Vibration Based Damage Identification Techniques (VBDIT) have emerged with potential for accurate damage assessment. VBDITs have achieved significant research interest in recent years, mainly due to their non-destructive nature and ability to assess inaccessible and invisible damage locations. Damage Index (DI) methods are also vibration based, but they are not based on the structural model. DI methods are fast and inexpensive compared to the model-based methods and have the ability to automate the damage detection process. DI method analyses the change in vibration response of the structure between two states so that the damage can be identified. Extensive research has been carried out to apply the DI method to assess damage in steel structures. Comparatively, there has been very little research interest in the use of DI methods to assess damage in Reinforced Concrete (RC) structures due to the complexity of simulating the predominant damage type, the flexural crack. Flexural cracks in RC beams distribute non- linearly and propagate along all directions. Secondary cracks extend more rapidly along the longitudinal and transverse directions of a RC structure than propagation of existing cracks in the depth direction due to stress distribution caused by the tensile reinforcement. Simplified damage simulation techniques (such as reductions in the modulus or section depth or use of rotational spring elements) that have been extensively used with research on steel structures, cannot be applied to simulate flexural cracks in RC elements. This highlights a big gap in knowledge and as a consequence VBDITs have not been successfully applied to damage assessment in RC structures. This research will address the above gap in knowledge and will develop and apply a modal strain energy based DI method to assess damage in RC flexural members. Firstly, this research evaluated different damage simulation techniques and recommended an appropriate technique to simulate the post cracking behaviour of RC structures. The ABAQUS finite element package was used throughout the study with properly validated material models. The damaged plasticity model was recommended as the method which can correctly simulate the post cracking behaviour of RC structures and was used in the rest of this study. Four different forms of Modal Strain Energy based Damage Indices (MSEDIs) were proposed to improve the damage assessment capability by minimising the numbers and intensities of false alarms. The developed MSEDIs were then used to automate the damage detection process by incorporating programmable algorithms. The developed algorithms have the ability to identify common issues associated with the vibration properties such as mode shifting and phase change. To minimise the effect of noise on the DI calculation process, this research proposed a sequential order of curve fitting technique. Finally, a statistical based damage assessment scheme was proposed to enhance the reliability of the damage assessment results. The proposed techniques were applied to locate damage in RC beams and slabs on girder bridge model to demonstrate their accuracy and efficiency. The outcomes of this research will make a significant contribution to the technical knowledge of VBDIT and will enhance the accuracy of damage assessment in RC structures. The application of the research findings to RC flexural members will enable their safe and efficient performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a detailed description of the influence of critical parameters that govern the vulnerability of columns under lateral impact loads. Numerical simulations are conducted by using the Finite Element program LS-DYNA, incorporating steel reinforcement, material models and strain rate effects. A simplified method based on impact pulse generated from full scale impact tests is used for impact reconstruction and effects of the various pulse loading parameters are investigated under low to medium velocity impacts. A constitutive material model which can simulate failures under tri-axial state of stresses is used for concrete. Confinement effects are also introduced to the numerical simulation and columns of Grade 30 to 50 concrete under pure axial loading are analysed in detail. This research confirmed that the vulnerability of the axially loaded columns can be mitigated by reducing the slenderness ratio and concrete grade, and by choosing the design option with a minimal amount of longitudinal steel. Additionally, it is evident that approximately a 50% increase in impact capacity can be gained for columns in medium rise buildings by enhancing the confinement effects alone. Results also indicated that the ductility as well as the mode of failure under impact can be changed with the volumetric ratio of lateral steel. Moreover, to increase the impact capacity of the vulnerable columns, a higher confining stress is required. The general provisions of current design codes do not sufficiently cover this aspect and hence this research will provide additional guidelines to overcome the inadequacies of code provisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An earlier CRC-CI project on ‘automatic estimating’ (AE) has shown the key benefit of model-based design methodologies in building design and construction to be the provision of timely quantitative cost evaluations. Furthermore, using AE during design improves design options, and results in improved design turn-around times, better design quality and/or lower costs. However, AEs for civil engineering structures do not exist; and research partners in the CRC-CI expressed interest in exploring the development of such a process. This document reports on these investigations. The central objective of the study was to evaluate the benefits and costs of developing an AE for concrete civil engineering works. By studying existing documents and through interviews with design engineers, contractors and estimators, we have established that current civil engineering practices (mainly roads/bridges) do not use model-based planning/design. Drawings are executed in 2D and only completed at the end of lengthy planning/design project management lifecycle stages. We have also determined that estimating plays two important, but different roles. The first is part of project management (which we have called macro level estimating). Estimating in this domain sets project budgets, controls quality delivery and contains costs. The second role is estimating during planning/design (micro level estimating). The difference between the two roles is that the former is performed at the end of various lifecycle stages, whereas the latter is performed at any suitable time during planning/design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents a summary of the research conducted by the research team of the CRC project 2002-005-C, “Decision support tools for concrete infrastructure rehabilitation”. The project scope, objectives, significance and innovation and the research methodology is outlined in the introduction, which is followed by five chapters covering different aspects of the research completed. Major findings of a review of literature conducted covering both use of fibre reinforced polymer composites in rehabilitation of concrete bridge structures and decision support frameworks in civil infrastructure asset management is presented in chapter two. Case study of development of a strengthening scheme for the “Tenthill Creek bridge” is covered in the third chapter, which summarises the capacity assessment, traditional strengthening solution and the innovative solution using FRP composites. The fourth chapter presents the methodology for development of a user guide covering selection of materials, design and application of FRP in strengthening of concrete structures, which were demonstrated using design examples. Fifth chapter presents the methodology developed for evaluating whole of life cycle costing of treatment options for concrete bridge structures. The decision support software tool developed to compare different treatment options based on reliability based whole of life cycle costing will be briefly described in this chapter as well. The report concludes with a summary of findings and recommendations for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iconic and significant buildings are the common target of bombings by terrorists causing large numbers of casualties and extensive property damage. Recent incidents were external bomb attacks on multi-storey buildings with reinforced concrete frames. Under a blast load circumstance, crucial damage initiates at low level storeys in a building and may then lead to a progressive collapse of whole or part of the structure. It is therefore important to identify the critical initial influence regions along the height, width and depth of the building exposed to blast effects and the structure response in order to assess the vulnerability of the structure to disproportionate and progressive collapse. This paper discusses the blast response and the propagation of its effects on a two dimensional reinforced concrete (RC) frame, designed to withstand normal gravity loads. The explicit finite element code, LS DYNA is used for the analysis. A complete RC portal frame seven storeys by six bays is modelled with reinforcement details and appropriate materials to simulate strain rate effects. Explosion loads derived from standard manuals are applied as idealized triangular pressures on the column faces of the numerical models. The analysis reports the influence of blast propagation as displacements and material yielding of the structural elements in the RC frame. The effected regions are identified and classified according to the load cases. This information can be used to determine the vulnerability of multi-storey RC buildings to various external explosion scenarios and designing buildings to resist blast loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing and estimating civil concrete structures is a complex process which to many practitioners is tied to manual or semi-manual processes of 2D design and cannot be further improved by automated, interacting design-estimating processes. This paper presents a feasibility study for the development an automated estimator for concrete bridge design. The study offers a value proposition: an efficient automated model-based estimator can add value to the whole bridge design-estimating process, i.e., reducing estimation errors, shortening the duration of success estimates, and increasing the benefit of doing cost estimation when compared with the current practice. This is then followed by a description of what is in an efficient automated model-based estimator and how it should be used. Finally the process of model-based estimating is compared with the current practice to highlight the values embedded in the automated processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforced concrete structures are susceptible to a variety of deterioration mechanisms due to creep and shrinkage, alkali-silica reaction (ASR), carbonation, and corrosion of the reinforcement. The deterioration problems can affect the integrity and load carrying capacity of the structure. Substantial research has been dedicated to these various mechanisms aiming to identify the causes, reactions, accelerants, retardants and consequences. This has improved our understanding of the long-term behaviour of reinforced concrete structures. However, the strengthening of reinforced concrete structures for durability has to date been mainly undertaken after expert assessment of field data followed by the development of a scheme to both terminate continuing degradation, by separating the structure from the environment, and strengthening the structure. The process does not include any significant consideration of the residual load-bearing capacity of the structure and the highly variable nature of estimates of such remaining capacity. Development of performance curves for deteriorating bridge structures has not been attempted due to the difficulty in developing a model when the input parameters have an extremely large variability. This paper presents a framework developed for an asset management system which assesses residual capacity and identifies the most appropriate rehabilitation method for a given reinforced concrete structure exposed to aggressive environments. In developing the framework, several industry consultation sessions have been conducted to identify input data required, research methodology and output knowledge base. Capturing expert opinion in a useable knowledge base requires development of a rule based formulation, which can subsequently be used to model the reliability of the performance curve of a reinforced concrete structure exposed to a given environment.