16 resultados para Compressors Valves

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past work has clearly demonstrated that numerous commonly used metallic materials will support burning in oxygen, especially at higher pressures. An approach to rectify this significant safety problem has been successfully developed and implemented by applying the concept of Situational Non-Flammability. This approach essentially removes or breaks one leg of the conceptual fire triangle, a tool commonly used to define the three things that are required to support burning; a fuel, an ignition source and an oxidizer. Since an oxidiser is always present in an oxygen system as are ignition sources, the concept of Situational Non-Flammability essentially removes the fuel leg of the fire triangle by only utilising materials that will not burn at the maximum pressure, for example, that the control valve is to be used in. The utilisation of this approach has lead to the development of a range of oxygen components that are practically unable to burn while in service at their design pressure thus providing an unparalleled level of first safety while not compromising on the performance or endurance required in the function of these components. This paper describes the concept of Situational Non-Flammability, how it was used to theoretically evaluate designs of components for oxygen service and the outcomes of the actual development, fabrication and finally utilisation of these components in real oxygen systems in a range of flow control devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Up to 1% of adults will suffer from leg ulceration at some time. The majority of leg ulcers are venous in origin and are caused by high pressure in the veins due to blockage or weakness of the valves in the veins of the leg. Prevention and treatment of venous ulcers is aimed at reducing the pressure either by removing / repairing the veins, or by applying compression bandages / stockings to reduce the pressure in the veins. The vast majority of venous ulcers are healed using compression bandages. Once healed they often recur and so it is customary to continue applying compression in the form of bandages, tights, stockings or socks in order to prevent recurrence. Compression bandages or hosiery (tights, stockings, socks) are often applied for ulcer prevention. Objectives To assess the effects of compression hosiery (socks, stockings, tights) or bandages in preventing the recurrence of venous ulcers. To determine whether there is an optimum pressure/type of compression to prevent recurrence of venous ulcers. Search methods The searches for the review were first undertaken in 2000. For this update we searched the Cochrane Wounds Group Specialised Register (October 2007), The Cochrane Central Register of Controlled Trials (CENTRAL) - The Cochrane Library 2007 Issue 3, Ovid MEDLINE - 1950 to September Week 4 2007, Ovid EMBASE - 1980 to 2007 Week 40 and Ovid CINAHL - 1982 to October Week 1 2007. Selection criteria Randomised controlled trials evaluating compression bandages or hosiery for preventing venous leg ulcers. Data collection and analysis Data extraction and assessment of study quality were undertaken by two authors independently. Results No trials compared recurrence rates with and without compression. One trial (300 patients) compared high (UK Class 3) compression hosiery with moderate (UK Class 2) compression hosiery. A intention to treat analysis found no significant reduction in recurrence at five years follow up associated with high compression hosiery compared with moderate compression hosiery (relative risk of recurrence 0.82, 95% confidence interval 0.61 to 1.12). This analysis would tend to underestimate the effectiveness of the high compression hosiery because a significant proportion of people changed from high compression to medium compression hosiery. Compliance rates were significantly higher with medium compression than with high compression hosiery. One trial (166 patients) found no statistically significant difference in recurrence between two types of medium (UK Class 2) compression hosiery (relative risk of recurrence with Medi was 0.74, 95% confidence interval 0.45 to 1.2). Both trials reported that not wearing compression hosiery was strongly associated with ulcer recurrence and this is circumstantial evidence that compression reduces ulcer recurrence. No trials were found which evaluated compression bandages for preventing ulcer recurrence. Authors' conclusions No trials compared compression with vs no compression for prevention of ulcer recurrence. Not wearing compression was associated with recurrence in both studies identified in this review. This is circumstantial evidence of the benefit of compression in reducing recurrence. Recurrence rates may be lower in high compression hosiery than in medium compression hosiery and therefore patients should be offered the strongest compression with which they can comply. Further trials are needed to determine the effectiveness of hosiery prescribed in other settings, i.e. in the UK community, in countries other than the UK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an overview of the CRC for Infrastructure and Engineering Asset Management (CIEAM)’s rotating machine health monitoring project and the status of the research progress. The project focuses on the development of a comprehensive diagnostic tool for condition monitoring and systematic analysis of rotating machinery. Particularly attention focuses on the machine health monitoring of diesel engines, compressors and pumps by using acoustic emission and vibration-based monitoring techniques. The paper also provides a brief summary of the work done by the three main research collaborating partners in the project, namely, Queensland University of Technology (QUT), Curtin University of Technology (CUT) and the University of Western Australia (UWA). Preliminary test and analysis results from this work are also reported in the paper

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compressed gas industry and government agencies worldwide utilize "adiabatic compression" testing for qualifying high-pressure valves, regulators, and other related flow control equipment for gaseous oxygen service. This test methodology is known by various terms including adiabatic compression testing, gaseous fluid impact testing, pneumatic impact testing, and BAM testing as the most common terms. The test methodology will be described in greater detail throughout this document but in summary it consists of pressurizing a test article (valve, regulator, etc.) with gaseous oxygen within 15 to 20 milliseconds (ms). Because the driven gas1 and the driving gas2 are rapidly compressed to the final test pressure at the inlet of the test article, they are rapidly heated by the sudden increase in pressure to sufficient temperatures (thermal energies) to sometimes result in ignition of the nonmetallic materials (seals and seats) used within the test article. In general, the more rapid the compression process the more "adiabatic" the pressure surge is presumed to be and the more like an isentropic process the pressure surge has been argued to simulate. Generally speaking, adiabatic compression is widely considered the most efficient ignition mechanism for directly kindling a nonmetallic material in gaseous oxygen and has been implicated in many fire investigations. Because of the ease of ignition of many nonmetallic materials by this heating mechanism, many industry standards prescribe this testing. However, the results between various laboratories conducting the testing have not always been consistent. Research into the test method indicated that the thermal profile achieved (i.e., temperature/time history of the gas) during adiabatic compression testing as required by the prevailing industry standards has not been fully modeled or empirically verified, although attempts have been made. This research evaluated the following questions: 1) Can the rapid compression process required by the industry standards be thermodynamically and fluid dynamically modeled so that predictions of the thermal profiles be made, 2) Can the thermal profiles produced by the rapid compression process be measured in order to validate the thermodynamic and fluid dynamic models; and, estimate the severity of the test, and, 3) Can controlling parameters be recommended so that new guidelines may be established for the industry standards to resolve inconsistencies between various test laboratories conducting tests according to the present standards?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficacy of existing articular cartilage defect repair strategies are limited. Native cartilage tissue forms via a series of exquisitely orchestrated morphogenic events spanning through gestation into early childhood. However, defect repair must be achieved in a non-ideal microenvironment over an accelerated time-frame compatible with the normal life of an adult patient. Scaffolds formed from decellularized tissues are commonly utilized to enable the rapid and accurate repair of tissues such as skin, bladder and heart valves. The intact extracellular matrix remaining following the decellularization of these relatively low-matrix-density tissues is able to rapidly and accurately guide host cell repopulation. By contrast, the extraordinary density of cartilage matrix limits both the initial decellularization of donor material as well as its subsequent repopulation. Repopulation of donor cartilage matrix is generally limited to the periphery, with repopulation of lacunae deeper within the matrix mass being highly inefficient. Herein, we review the relevant literature and discuss the trend toward the use of decellularized donor cartilage matrix of microscopic dimensions. We show that 2-µm microparticles of donor matrix are rapidly integrate with articular chondrocytes, forming a robust cartilage-like composites with enhanced chondrogenic gene expression. Strategies for the clinical application of donor matrix microparticles in cartilage defect repair are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An optical system which performs the multiplication of binary numbers is described and proof-of-principle experiments are performed. The simultaneous generation of all partial products, optical regrouping of bit products, and optical carry look-ahead addition are novel features of the proposed scheme which takes advantage of the parallel operations capability of optical computers. The proposed processor uses liquid crystal light valves (LCLVs). By space-sharing the LCLVs one such system could function as an array of multipliers. Together with the optical carry look-ahead adders described, this would constitute an optical matrix-vector multiplier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis represents a major step forward in understanding the link between the development of combustion related faults in diesel engines and the generation of acoustic emissions. The findings presented throughout the thesis provide a foundation so that future diesel engine monitoring systems are able to more effectively detect and monitor developing faults. In undertaking this research knowledge concerning engine function and relevant failure mechanisms was combined with different modelling methods to generate a framework that was used to effectively identify fault related activity within acoustic emissions recorded from different engines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent literature suggests that mesenchymal stem/stromal cells (MSC) could be used as Trojan Horses to deliver “death-signals” to cancer cells. Herein, we describe the development of a novel multichannel cell migration device, and use it to investigate the relative migration rates of bone marrow-derived MSC and breast cancer cells (MCF-7) towards each other. Confluent monolayers of MSC and MCF-7 were established in adjacent chambers separated by an array of 14 microchannels. Initially, culture chambers were isolated by air bubbles (air-valves) contained within each microchannel, and then bubbles were displaced to initiate the assay. The MCF-7 cells migrated preferentially towards MSC, whilst the MSC did not migrate preferentially towards the MCF-7 cells. Our results corroborate previous literature that suggests MSC migration towards cancer cells in vivo is in response to the associated inflammation rather than directly to signals secreted by the cancer cells themselves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infective endocarditis (IE) is a life-threatening infection of the heart endothelium and valves. Staphylococcus aureus is a predominant cause of severe IE and is frequently associated with infections in health care settings and device-related infections. Multilocus sequence typing (MLST), spa typing, and virulence gene microarrays are frequently used to classify S. aureus clinical isolates. This study examined the utility of these typing tools to investigate S. aureus epidemiology associated with IE. Ninety-seven S. aureus isolates were collected from patients diagnosed with (i) IE, (ii) bloodstream infection related to medical devices, (iii) bloodstream infection not related to medical devices, and (iv) skin or soft-tissue infections. The MLST clonal complex (CC) for each isolate was determined and compared to the CCs of members of the S. aureus population by eBURST analysis. The spa type of all isolates was also determined. A null model was used to determine correlations of IE with CC and spa type. DNA microarray analysis was performed, and a permutational analysis of multivariate variance (PERMANOVA) and principal coordinates analysis were conducted to identify genotypic differences between IE and non-IE strains. CC12, CC20, and spa type t160 were significantly associated with IE S. aureus. A subset of virulence-associated genes and alleles, including genes encoding staphylococcal superantigen-like proteins, fibrinogen-binding protein, and a leukocidin subunit, also significantly correlated with IE isolates. MLST, spa typing, and microarray analysis are promising tools for monitoring S. aureus epidemiology associated with IE. Further research to determine a role for the S. aureus IE-associated virulence genes identified in this study is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Sakmarian to early Artinskian (Early Permian) carbonate deposition was widespread in the marine intracratonic rift basins that extended into the interior of Eastern Gondwana from Timor in the north to the northern Perth Basin in the south. These basins spanned about 20° of paleolatitude (approximately 35°S to 55°S). This study describes the type section of the Maubisse Limestone in Timor-Leste, and compares this unit with carbonate sections in the Canning Basin (Nura Nura Member of the Poole Sandstone), the Southern Carnarvon Basin (Callytharra Formation) and the northern Perth Basin (Fossil Cliff Member of the Holmwood Shale). The carbonate units have no glacial influence and formed part of a major depositional cycle that, in the southern basins, overlies glacially influenced strata and lies a short distance below mudstone containing marine fossils and scattered dropstones (perhaps indicative of sea ice). In the south marine conditions became more restricted and were replaced by coal measures at the top of the depositional sequence. In the north, the carbonate deposits are possibly bryozoan–crinoidal mounds; whereas in the southern basins they form laterally continuous relatively thin beds, deposited on a very low-gradient seafloor, at the tops of shale–limestone parasequences that thicken upward in parasequence sets. All marine deposition within the sequence took place under very shallow (inner neritic) conditions, and the limestones have similar grain composition. Bryozoan and crinoidal debris dominate the grain assemblages and brachiopod shell fragments, foraminifera and ostracod valves are usually common. Tubiphytes ranged as far south as the Southern Carnarvon Basin, albeit rarely, but is more common to the north. Gastropod and bivalve shell debris, echinoid spines, solitary rugose corals and trilobite carapace elements are rare. The uniformity of the grain assemblage and the lack of tropical elements such as larger fusulinid foraminifera, colonial corals or dasycladacean algae indicate temperate marine conditions with only a small increase in temperature to the north. The depositional cycle containing the studied carbonate deposits represents a warmer phase than the preceding glacially influenced Asselian to early Sakmarian interval and the subsequent cool phase of the “mid” Artinskian that is followed by significant warming during the late Artinskian–early Kungurian. The timing of cooler and warmer intervals in the west Australian basins seems out-of-phase with the eastern Australian succession, but this may be a problem of chronostratigraphic miscorrelation due to endemic faunas and palynofloras.