3 resultados para Composting

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project developed and assessed a standard operating procedure for monitoring microbiological aerosol levels and dispersal from Australian industrial composting facilities. Development occurred via seasonal monitoring of such operations with evaluation of optimal microbial indicator organisms, sampling and analysis logistics. The resultant procedure allows practical end-user assessment of compost-associated bioaerosol levels, and potential health risks to proximal residential populations encroaching on such composting facilities and on-site industrial operations personnel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Republic of Kiribati is a small, highly infertile Pacific Island nation and is one of the most challenging locations to attempt to support dense urban populations. Kiribati, like other nations in the Pacific, faces an urban future where food insecurity, unemployment, waste management and malnutrition will become increasing issues. Homegardening is suggested as one way to address many of these problems. However, the most recent study on agriculture production in urban centres in Kiribati shows that, in general, intensive cultivation of homegardens is not a common practice. This disparity between theory and practice creates an opportunity to re-examine homegardening in Kiribati and, more broadly, in the Pacific. This paper examines the practice of homegardening in urban centres in Kiribati and explores reasons why change has or has not occurred through interviews with homegardeners and government/donor representives. Results show that homegardening has increased significantly in the past five years, largely because of the promotion of homegardens and organic composting systems by donor organisations. While findings further endorse homegardening as an excellent theoretical solution to many of the problems that confront urban settlements in Kiribati and the Pacific, it raises additional questions regarding the continuation of homegarden schemes beyond donor support programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioremediation is a potential option to treat 1, 1, 1-trichloro-2, 2 bis (4-chlorophenyl) ethane (DDT) contaminated sites. In areas where suitable microbes are not present, the use of DDT resistant microbial inoculants may be necessary. It is vital that such inoculants do not produce recalcitrant breakdown products e.g. 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE). Therefore, this work aimed to screen DDT-contaminated soil and compost materials for the presence of DDT-resistant microbes for use as potential inoculants. Four compost amended soils, contaminated with different concentrations of DDT, were used to isolate DDT-resistant microbes in media containing 150 mg I -1 DDT at three temperatures (25, 37 and 55°C). In all soils, bacteria were more sensitive to DDT than actinomycetes and fungi. Bacteria isolated at 55°C from any source were the most DDT sensitive. However DDT-resistant bacterial strains showed more promise in degrading DDT than isolated fungal strains, as 1, 1-dichloro 2, 2-bis (4-chlorophenyl) ethane (DDD) was a major bacterial transformation product, while fungi tended to produce more DDE. Further studies on selected bacterial isolates found that the most promising bacterial strain (Bacillus sp. BHD-4) could remove 51% of DDT from liquid culture after 7 days growth. Of the amount transformed, 6% was found as DDD and 3% as DDE suggesting that further transformation of DDT and its metabolites occurred.