9 resultados para CoO
em Queensland University of Technology - ePrints Archive
Resumo:
Cobalt hydroxide, cobalt oxyhydroxide and cobalt oxide nanomaterials were synthesized through simple soft chemistry. The cobalt hydroxide displays hexagonal morphology with clear edges 20 nm long. This morphology and nanosize is retained through to cobalt oxide Co3O4 through a topotactical relationship. Cobalt oxyhydroxide and cobalt oxide nanomaterials were synthesized through oxidation and low temperature calcination from the as-prepared cobalt hydroxide. Characterisation of these cobalt-based nanomaterials were fully developed, including X-ray diffraction, transmission electron microscopy combined with selected area electron diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. Bonding of the divalent cobalt hydroxide from the oxyhydroxide and oxides by studying their high resolution XPS spectra for Co 2p3/2 and O 1s. Raman spectroscopy of the as-prepared Co(OH)2, CoO(OH) and Co3O4 nanomaterials characterised each material. The thermal stability of the materials Co(OH)2 and CoO(OH) were established. This research has developed methodology for the synthesis of cobalt oxide and cobalt oxyhydroxide nanodiscs at low temperatures.
Resumo:
Principal Topic: ''In less than ten years music labels will not exist anymore.'' Michael Smelli, former Global COO Sony/BMG MCA/QUT IMP Business Lab Digital Music Think Thanks 9 May 2009, Brisbane Big music labels such as EMI, Sony BMG and UMG have been responsible for promoting and producing a myriad of stars in the music industry over the last decades. However, the industry structure is under enormous threat with the emergence of a new innovative era of digital music. Recent years have seen a dramatic shift in industry power with the emergence of Napster and other file sharing sites, iTunes and other online stores, iPod and the MP3 revolution. Myspace.com and other social networking sites are connecting entrepreneurial artists with fans and creating online music communities independent of music labels. In 2008 the digital music business internationally grew by around 25% to 3.7 Billion US-Dollar. Digital platforms now account for around 20% of recorded music sales, up from 15 % in 2007 (IFPI Digital music report 2009). CD sales have fallen by 40% since their peak levels. Global digital music sales totalled an estimated US$ 3 Billion in 2007, an increase of 40% on 2006 figures. Digital sales account for an estimated 15% of global market, up from 11% in 2006 and zero in 2003. The music industry is more advanced in terms of digital revenues than any other creative or entertainment industry (except games). Its digital share is more than twice that of newspapers (7%), films (35) or books (2%). All these shifts present new possibilities for music entrepreneurs to act entrepreneurially and promote their music independently of the major music labels. Diffusion of innovations has a long tradition in both sociology (e.g. Rogers 1962, 2003) and marketing (Bass 1969, Mahajan et al., 1990). The context of the current project is theoretically interesting in two respects. First, the role of online social networks replaces traditional face-to-face word of mouth communications. Second, as music is a hedonistic product, this strongly influences the nature of interpersonal communications and their diffusion patterns. Both of these have received very little attention in the diffusion literature to date, and no studies have investigated the influence of both simultaneously. This research project is concerned with the role of social networks in this new music industry landscape, and how this may be leveraged by musicians willing to act entrepreneurially. Our key research question we intend to address is: How do online social network communities impact the nature, pattern and speed that music diffuses? Methodology/Key Propositions : We expect the nature/ character of diffusion of popular, generic music genres to be different from specialized, niche music. To date, only Moe & Fader (2002) and Lee et al. (2003) investigated diffusion patterns of music and these focus on forecast weekly sales of music CDs based on the advance purchase orders before the launch, rather than taking a detailed look at diffusion patterns. Consequently, our first research questions are concerned with understanding the nature of online communications within the context of diffusion of music and artists. Hence, we have the following research questions: RQ1: What is the nature of fan-to-fan ''word of mouth'' online communications for music? Do these vary by type of artist and genre of music? RQ2: What is the nature of artist-to-fan online communications for music? Do these vary by type of artist and genre of music? What types of communication are effective? Two outcomes from research social network theory are particularly relevant to understanding how music might diffuse through social networks. Weak tie theory (Granovetter, 1973), argues that casual or infrequent contacts within a social network (or weak ties) act as a link to unique information which is not normally contained within an entrepreneurs inner circle (or strong tie) social network. A related argument, structural hole theory (Burt, 1992), posits that it is the absence of direct links (or structural holes) between members of a social network which offers similar informational benefits. Although these two theories argue for the information benefits of casual linkages, and diversity within a social network, others acknowledge that a balanced network which consists of a mix of strong ties, weak ties is perhaps more important overall (Uzzi, 1996). It is anticipated that the network structure of the fan base for different types of artists and genres of music will vary considerably. This leads to our third research question: RQ3: How does the network structure of online social network communities impact the pattern and speed that music diffuses? The current paper is best described as theory elaboration. It will report the first exploratory phase designed to develop and elaborate relevant theory (the second phase will be a quantitative study of network structure and diffusion). We intend to develop specific research propositions or hypotheses from the above research questions. To do so we will conduct three focus group discussions of independent musicians and three focus group discussions of fans active in online music communication on social network sites. We will also conduct five case studies of bands that have successfully built fan bases through social networking sites (e.g. myspace.com, facebook.com). The idea is to identify which communication channels they employ and the characteristics of the fan interactions for different genres of music. We intend to conduct interviews with each of the artists and analyse their online interaction with their fans. Results and Implications : At the current stage, we have just begun to conduct focus group discussions. An analysis of the themes from these focus groups will enable us to further refine our research questions into testable hypotheses. Ultimately, our research will provide a better understanding of how social networks promote the diffusion of music, and how this varies for different genres of music. Hence, some music entrepreneurs will be able to promote their music more effectively. The results may be further generalised to other industries where online peer-to-peer communication is common, such as other forms of entertainment and consumer technologies.
Resumo:
This review collects and summarises the biological applications of the element cobalt. Small amounts of the ferromagnetic metal can be found in rock, soil, plants and animals, but is mainly obtained as a by-product of nickel and copper mining, and is separated from the ores (mainly cobaltite, erythrite, glaucodot and skutterudite) using a variety of methods. Compounds of cobalt include several oxides, including: green cobalt(II) (CoO), blue cobalt(II,III) (Co3O4), and black cobalt(III) (Co2O3); four halides including pink cobalt(II) fluoride (CoF2), blue cobalt(II) chloride (CoCl2), green cobalt(II) bromide (CoBr2), and blue-black cobalt(II) iodide (CoI2). The main application of cobalt is in its metal form in cobalt-based super alloys, though other uses include lithium cobalt oxide batteries, chemical reaction catalyst, pigments and colouring, and radioisotopes in medicine. It is known to mimic hypoxia on the cellular level by stabilizing the α subunit of hypoxia inducing factor (HIF), when chemically applied as cobalt chloride (CoCl2). This is seen in many biological research applications, where it has shown to promote angiogenesis, erythropoiesis and anaerobic metabolism through the transcriptional activation of genes such as vascular endothelial growth factor (VEGF) and erythropoietin (EPO), contributing significantly to the pathophysiology of major categories of disease, such as myocardial, renal and cerebral ischaemia, high altitude related maladies and bone defects. As a necessary constituent for the formation of vitamin B12, it is essential to all animals, including humans, however excessive exposure can lead to tissue and cellular toxicity. Cobalt has been shown to provide promising potential in clinical applications, however further studies are necessary to clarify its role in hypoxia-responsive genes and the applications of cobalt-chloride treated tissues.
Resumo:
In this work, a range of nanomaterials have been synthesised based on metal oxyhydroxides MO(OH), where M=Al, Co, Cr, etc. Through a self-assembly hydrothermal route, metal oxyhydroxide nanomaterials with various morphologies were successfully synthesised: one dimensional boehmite (AlO(OH)) nanofibres, zero dimensional indium hydroxide (In(OH)3) nanocubes and chromium oxyhydroxide (CrO(OH)) nanoparticles, as well as two dimensional cobalt hydroxide and oxyhydroxide (Co(OH)2 & CoO(OH)) nanodiscs. In order to control the synthetic nanomaterial morphology and growth, several factors were investigated including cation concentration, temperature, hydrothermal treatment time, and pH. Metal ion doping is a promising technique to modify and control the properties of materials by intentionally introducing impurities or defects into the material. Chromium was successfully applied as a dopant for fabricating doped boehmite nanofibres. The thermal stability of the boehmite nanofibres was enhanced by chromium doping, and the photoluminescence property was introduced to the chromium doped alumina nanofibres. Doping proved to be an efficient method to modify and functionalize nanomaterials. The synthesised nanomaterials were fully characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), scanning electron microscopy (SEM), BET specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TGA). Hot-stage Raman and infrared emission spectroscopy were applied to study the chemical reactions during dehydration and dehydroxylation. The advantage of these techniques is that the changes in molecular structure can be followed in situ and at the elevated temperatures.
Resumo:
The effect of oxidation and reduction conditions upon the morphology of polycrystalline silver catalysts has been investigated by means of in situ Fourier-transform infrared (FTIR) spectroscopy. Characterization of the sample was achieved by inspection of the νas(COO) band profile of adsorbed formate, recorded after dosing with formic acid at ambient temperature. Evidence was obtained for the existence of a silver surface reconstructed by the presence of subsurface oxygen in addition to the conventional family of Ag(111) and Ag(110) crystal faces. Oxidation at 773 K facilitated the reconstruction of silver planes due to the formation of subsurface oxygen species. Prolonged oxygen treatment at 773 K also caused particle fragmentation as a consequence of excessive oxygen penetration of the silver catalyst at defect sites. It was also deduced that the presence of oxygen in the gas phase stabilized the growth of silver planes which could form stronger bonds with oxygen. In contrast, high-temperature thermal treatment in vacuum induced significant sintering of the silver catalyst. Reduction at 773 K resulted in substantial quantities of dissolved hydrogen (and probably hydroxy species) in the bulk silver structure. Furthermore, enhanced defect formation in the catalyst was also noted, as evidenced by the increased concentration of formate species associated with oxygen-reconstructed silver faces.
Resumo:
The collision-induced dissociation ( CID) mass spectra of the \[M-H](-) anions of methyl, ethyl, and tert-butyl hydroperoxides have been measured over a range of collision energies in a flowing afterglow - selected ion flow tube (FA-SIFT) mass spectrometer. Activation of the CH3OO- anion is found to give predominantly HO- fragment anions whilst CH3CH2OO- and (CH3)(3)COO- produce HOO- as the major ionic fragment. These results, and other minor fragmentation pathways, can be rationalized in terms of unimolecular rearrangement of the activated anions with subsequent decomposition. The rearrangement reactions occur via initial abstraction of a proton from the alpha-carbon in the case of CH3OO- or the beta-carbon for CH3CH2OO- and (CH3)(3)COO-. Electronic structure calculations suggest that for the CH3CH2OO- anion, which can theoretically undergo both alpha- and beta-proton abstraction, the latter pathway, resulting in HOO- + CH2CH2, is energetically preferred.
Resumo:
Asymmetrical electrical boundary conditions in (001)-oriented Pb(Zr 0.2TiO0.8)O3 (PZT) epitaxial ultrathin ferroelectric films are exploited to control surface photochemical reactivity determined by the sign of the surface polarization charge. It is shown that the preferential orientation of polarization in the as-grown PZT layer can be manipulated by choosing an appropriate type of bottom electrode material. PZT films deposited on the SrRuO3 electrodes exhibit preferential upward polarization (C) whilst the same films grown on the (La,Sr)CoO 3-electrodes are polarized downward (C-). Photochemical activity of the PZT surfaces with different surface polarization charges has been tested by studying deposition of silver nanoparticles from AgNO3 solution under UV irradiation. PZT surfaces with preferential C orientation possess a more active surface for metal reduction than their C- counterparts, evidenced by large differences in the concentration of deposited silver nanoparticles. This effect is attributed to band bending at the bottom interface which varies depending on the difference in work functions of PZT and electrode materials.
Resumo:
* Local foods are growing in importance in the mind set of the consumer – “the new organic” (McKenzie-Minifie, 2007) * Consumers are becoming more active in choosing alternative channels to purchase locally grown/produced foods Growth of farmer’s markets, roadside stalls, community gardens and *CSA programs * Supermarkets and grocers continue to tailor their assortments to include, ethnic, organic, natural and local foods to meet changing consumer needs * Australian research is limited, although one early study has found ‘buying locally produced foods’ was considered an important attribute (Lea & Worsley, 2007) * International research has tended to focus on COO effects, rather than region or local effects. (Insch & Florek, 2009) *Emerging research is beginning to explore consumer interest in ‘local’ over simply ‘domestic’ – although not specifically in food. (Hustvedt, Carroll & Bernard, 2013) * One study has examined differences in attitudes, subjective norms and intentions toward the purchase of locally produced foods. (Campbell, 2013)
Resumo:
Background Risk-stratification of diffuse large B-cell lymphoma (DLBCL) requires identification of patients with disease that is not cured despite initial R-CHOP. Although the prognostic importance of the tumour microenvironment (TME) is established, the optimal strategy to quantify it is unknown. Methods The relationship between immune-effector and inhibitory (checkpoint) genes was assessed by NanoString™ in 252 paraffin-embedded DLBCL tissues. A model to quantify net anti-tumoural immunity as an outcome predictor was tested in 158 R-CHOP treated patients, and validated in tissue/blood from two independent R-CHOP treated cohorts of 233 and 140 patients respectively. Findings T and NK-cell immune-effector molecule expression correlated with tumour associated macrophage and PD-1/PD-L1 axis markers consistent with malignant B-cells triggering a dynamic checkpoint response to adapt to and evade immune-surveillance. A tree-based survival model was performed to test if immune-effector to checkpoint ratios were prognostic. The CD4*CD8:(CD163/CD68)*PD-L1 ratio was better able to stratify overall survival than any single or combination of immune markers, distinguishing groups with disparate 4-year survivals (92% versus 47%). The immune ratio was independent of and added to the revised international prognostic index (R-IPI) and cell-of-origin (COO). Tissue findings were validated in 233 DLBCL R-CHOP treated patients. Furthermore, within the blood of 140 R-CHOP treated patients immune-effector:checkpoint ratios were associated with differential interim-PET/CT+ve/-ve expression.