11 resultados para Citrus leprosis
em Queensland University of Technology - ePrints Archive
Resumo:
Citrus canker is a disease of citrus and closely related species, caused by the bacterium Xanthomonas citri subsp. citri. This disease, previously exotic to Australia, was detected on a single farm [infested premise-1, (IP1). IP is the terminology used in official biosecurity protocols to describe a locality at which an exotic plant pest has been confirmed or is presumed to exist. IP are numbered sequentially as they are detected] in Emerald, Queensland in July 2004. During the following 10 months the disease was subsequently detected on two other farms (IP2 and IP3) within the same area and studies indicated the disease first occurred on IP1 and spread to IP2 and IP3. The oldest, naturally infected plant tissue observed on any of these farms indicated the disease was present on IP1 for several months before detection and established on IP2 and IP3 during the second quarter (i.e. autumn) 2004. Transect studies on some IP1 blocks showed disease incidences ranged between 52 and 100% (trees infected). This contrasted to very low disease incidence, less than 4% of trees within a block, on IP2 and IP3. The mechanisms proposed for disease spread within blocks include weather-assisted dispersal of the bacterium (e.g. wind-driven rain) and movement of contaminated farm equipment, in particular by pivot irrigator towers via mechanical damage in combination with abundant water. Spread between blocks on IP2 was attributed to movement of contaminated farm equipment and/or people. Epidemiology results suggest: (i) successive surveillance rounds increase the likelihood of disease detection; (ii) surveillance sensitivity is affected by tree size; and (iii) individual destruction zones (for the purpose of eradication) could be determined using disease incidence and severity data rather than a predefined set area.
Resumo:
Queensland fruit fly, Bactrocera tryoni (Froggatt), is a polyphagous pest, and many citrus types are included among its hosts. While quantification of citrus host use by B. tryoni is lacking, citrus is generally considered a ‘low pressure’ crop. This paper investigates B. tryoni female oviposition preference and offspring performance in five citrus types; Murcott mandarin (Citrus reticulata), Navel orange and Valencia orange (Citrus sinensis), Eureka lemon (Citrus limon) and yellow grapefruit (Citrus paradisi). Oviposition preference was investigated in laboratory-based choice and no-choice experiments, while immature survival and offspring performance were investigated by infesting fruits in the laboratory and evaluating pupal recovery, pupal emergence and F1 fecundity. Fruit size, Brix level and peel toughness were also measured for correlation with host use. Bactrocera tryoni demonstrated an oviposition preference hierarchy among the citrus fruits tested; Murcott and grapefruit were most preferred for oviposition and lemon the least, while preference for Navel and Valencia was intermediate. Peel toughness was negatively correlated with B. tryoni oviposition preference, while no significant correlations were detected between oviposition and Brix level or fruit size. Immature survival in the tested fruit was very low. Murcott was the best host (21% pupal recovery), while all other citrus types that showed pupal recovery of 6% or lower and no pupae were recovered from Valencia orange. In pupae recovered from Navel orange and lemon, adult eclosion was greatly reduced, while in grapefruit and lemon, no eggs were recovered from F1 adults. Based on these laboratory results, many commercial citrus varieties appear to be poor hosts for B. tryoni and may pose a low post-harvest and quarantine risk. These findings need to be confirmed in the field, as they impact on both pre-harvest and post-harvest countermeasures.
Resumo:
Fruit flies are the insects which cause maggots in your backyard fruit and vegetables. They are not just a nuisance to gardeners, but the single greatest insect threat to commercial and subsistence fruit growers throughout Asia, Australia and the Pacific. Queensland fruit fly, the focus of this PhD, costs Australia an estimated $100million per year. I focused specifically on how Queensland fruit fly uses different commercial citrus varieties. I identified specific plant related mechanisms which increase a fruit’s resistance to fruit fly attack. This information can be used by plant breeders to make fruit less prone to fruit fly damage.
Resumo:
Closteroviruslike particles, designated as grapevine corky bark-associated virus (GCBaV), were purified from mature leaves and stem phloem tissue of a corky bark-affected grapevine that had indexed negative for other grapevine viruses. Electron microscopy of purified preparations revealed the presence of flexuous rod-shaped viruslike particles that were about 13 nm in diameter and between 1,400 and 2,000 nm long, with a helical pitch of 3.4 nm. In purified preparations, the GCBaV particles degraded within a few weeks, unlike grapevine leafroll associated virus (GLRaV), which was stable for more than 1 mo under the same storage condition. The molecular weight of the coat protein of GCBaV was 24,000. A large dsRNA molecule (about 15.3 kbp), along with lower molecular weight species, was detected in tissues of corky bark-diseased grapevines, but not in healthy grapevines. Polyclonal antisera were produced in rabbits against purified or partially purified virus preparations. In direct enzyme-linked immunosorbent assay (ELISA), antisera to GCBaV did not react to the serologically distinct types (II and III) of the long closteroviruses associated with grapevine leafroll disease and grapevine virus A (GVA), and vice versa. This antiserum also reacted in ELISA with other corky bark-affected grapevines. Our data suggest that closteroviruslike particles, designated as GCBaV, may be the causal agent of corky bark disease. However, definitive proof is still lacking. The inclusion of GCBaV in the group of closteroviruses with citrus tristeza virus is proposed.
Resumo:
Oribius species are small flightless weevils endemic to the island of New Guinea and far northern Cape York, Australia. The adults feed externally on leaves, developing fruit and green bark, but their impact as pests and general host use patterns are poorly known. Working in Eastern Highlands Province, Papua New Guinea, we carried out structured host use surveys, farmer surveys, shade-house growth trials, and on-farm and on-station impact trials to: (i) estimate the host range of the local Oribius species; (ii) understand adult daily activity patterns; (iii) elucidate feeding habits of the soil dwelling larvae; and (iv) quantify the impacts of adult feeding damage. Oribius inimicus and O. destructor accounted for nearly all the Oribius species encountered locally: of these two O. inimicus was the most abundant. Weevils were collected from 31 of 33 plants surveyed in the Aiyura Valley and a combination of farmer interviews and literature records provided evidence for the beetles being pestiferous on 43 crops currently or previously grown in the Highlands. Adult weevils had a distinct diurnal pattern of being in the upper plant canopy early in the morning and, to a lesser extent, again late in the afternoon. For the remainder of the day beetles resided within the canopy, or possibly off the plant. Movement of adults between plants appeared frequent. Pot trials confirmed the larvae are root feeders. Quantified impact studies showed that the weevils are damaging to a range of vegetable and orchard crops (broccoli, capsicum, celery, French bean, Irish potato, lettuce, orange and strawberry), causing average yield losses of around 30-40%, but up to 100% on citrus. Oribius weevils pose a significant and apparently growing problem for Highland’s agriculture.
Resumo:
AIM: Zhi Zhu Wan (ZZW) is a classical Chinese medical formulation used for the treatment of functional dyspepsia that attributed to Spleen-deficiency Syndrome. ZZW contains Atractylodes Rhizome and Fructus Citrus Immaturus, the later originates from both Citrus aurantium L. (BZZW) and Citrus sinensis Osbeck (RZZW). The present study is designed to elucidate disparities in the clinical efficacy of two ZZW varieties based on the pharmacokinetics of naringenin and hesperetin. MEHTOD: After oral administration of ZZWs, blood sample was collected from healthy volunteers at designed time points. Naringenin and hesperetin were detected in plasma by RP-HPLC, pharmacokinetic parameters were processed using mode-independent methods with WINNONLIN. RESULTS: After oral administration of BZZW, both naringenin and hesperetin were detected in plasma, and demonstrated similar pharmacokinetic parameters. Ka was 0.384+/-0.165 and 0.401+/-0.159, T(1/2(ke))(h) was 5.491+/-3.926 and 5.824+/-3.067, the AUC (mg/Lh) was 34.886+/-22.199 and 39.407+/-19.535 for naringenin and hesperetin, respectively. However, in the case of RZZW, only hesperetin was found in plasma, but the pharmacokinetic properties for hesperetin in RZZW was different from that in BZZW. T(max) for hesperetin in RZZW is about 8.515h, and its C(max) is much larger than that of BZZW. Moreover, it was eliminated slowly as it possessed a much larger AUC value. CONCLUSION: The distinct therapeutic orientations of the Chinese medical formula ZZWs with different Fructus Citrus Immaturus could be elucidated based on the pharmacokinetic parameters of constituents after oral administration.
Resumo:
Letter to the Editor We read with interest the case report entitled ‘‘Contact with fig tree sap: An unusual cause of burn injury’’ by Mandalia et al. [1] and would like to report our similar experience with phytophotodermatitis caused by lime juice. Phototoxic dermatitis is understandably easily confused with a burn, particularly when a patient presents with large blisters of unknown mechanism. At the Royal Children’s Hospital Burns Centre, this injury was treated in the same manner as a burn and is described here...
Resumo:
Human cytochrome P450 (P450) enzymes are involved in the oxidation of natural products found in foods, beverages, and tobacco products and their catalytic activities can also be modulated by components of the materials. The microsomal activation of aflatoxin B1 to the exo-3,9-epoxide is stimulated by flavone and 7,8-benzoflavone, and attenuated by the flavonoid naringenin, a major component of grapefruit. P4502E1 has been demonstrated to play a potentially major role in the activation of a number of very low-molecular weight cancer suspects, including ethyl carbamate (urethan), which is present in alcoholic beverages and particularly stone brandies. The enzyme (P4502E1) is also known to be inducible by ethanol. Tobacco contains a large number of potential carcinogens. In human liver microsomes a significant role for P4501A2 can be demonstrated in the activation of cigarette smoke condensate. Some of the genotoxicity may be due to arylamines. P4501A2 is also inhibited by components of crude cigarette smoke condensate. The tobacco-specific nitrosamines are activated by a number of P450 enzymes. Of those known to be present in human liver, P4501A2, 2A6, and 2E1 can activate these nitrosamines to genotoxic products.
Resumo:
The use of malathion in fruit fly protein bait sprays has raised serious concerns due to its adverse effects on non-target organisms. This has necessitated the evaluation of novel reduced-risk compounds. This study evaluated the effects of spinosad, fipronil, malathion and chlorpyrifos mixed with fruit fly protein bait (Mauri Pinnacle protein®) on attraction, feeding and mortality of the Queensland fruit fly, Bactrocera tryoni (Froggatt). The effects of outdoor weathering of these mixtures on fly mortality were also determined. In field-cage experiment, protein-starved flies showed the same level of attraction to baits containing spinosad, fipronil, malathion, chlorpyrifos and protein alone used as control. Female protein-starved flies were deterred from feeding on baits containing malathion and chlorpyrifos compared to baits containing spinosad, fipronil and protein alone. Baits containing malathion and chlorpyrifos caused higher fly mortality and rapid fly knock down than spinosad and fipronil. However, spinosad acted slowly and caused an increase in fly mortality over time, causing up to 90% fly mortality after 72-h. Baits containing malathion and chlorpyrifos, applied on citrus leaves and weathered outdoors, had longer residual effectiveness in killing flies than spinosad and fipronil. Residual effectiveness of the spinosad bait mixture waned significantly after 3 days of outdoor weathering. Results suggest that spinosad and fipronil can be potential alternatives for malathion in protein bait sprays.
Resumo:
Environmental factors contribute to over 70% of crop yield losses worldwide. Of these drought and salinity are the most significant causes of crop yield reduction. Rice is an important staple crop that feeds more than half of the world’s population. However among the agronomically important cereals rice is the most sensitive to salinity. In the present study we show that exogenous expression of anti-apoptotic genes from diverse origins, AtBAG4 (Arabidopsis), Hsp70 (Citrus tristeza virus) and p35 (Baculovirus), significantly improves salinity tolerance in rice at the whole plant level. Physiological, biochemical and agronomical analyses of transgenic rice expressing each of the anti-apoptotic genes subjected to salinity treatment demonstrated traits associated with tolerant varieties including, improved photosynthesis, membrane integrity, ion and ROS maintenance systems, growth rate, and yield components. Moreover, FTIR analysis showed that the chemical composition of salinity-treated transgenic plants is reminiscent of non-treated, unstressed controls. In contrast, wild type and vector control plants displayed hallmark features of stress, including pectin degradation upon subjection to salinity treatment. Interestingly, despite their diverse origins, transgenic plants expressing the anti-apoptotic genes assessed in this study displayed similar physiological and biochemical characteristics during salinity treatment thus providing further evidence that cell death pathways are conserved across broad evolutionary kingdoms. Our results reveal that anti-apoptotic genes facilitate maintenance of metabolic activity at the whole plant level to create favorable conditions for cellular survival. It is these conditions that are crucial and conducive to the plants ability to tolerate/adapt to extreme environments.