154 resultados para Chemical modifications

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This is the first report of an antibody-fusion protein expressed in transgenic plants for direct use in a medical diagnostic assay. By the use of gene constructs with appropriate promoters, high level expression of an anti-glycophorin single-chain antibody fused to an epitope of the HIV virus was obtained in the leaves and stems of tobacco, tubers of potato and seed of barley. This fusion protein replaces the SimpliRED™ diagnostic reagent, used for detecting the presence of HIV-1 antibodies in human blood. The reagent is expensive and laborious to produce by conventional means since chemical modifications to a monoclonal antibody are required. The plant-produced fusion protein was fully functional (by ELISA) in crude extracts and, for tobacco at least, could be used without further purification in the HIV agglutination assay. All three crop species produced sufficient reagent levels to be superior bioreactors to bacteria or mice, however barley grain was the most attractive bioreactor as it expressed the highest level (150 μg of reagent g-1), is inexpensive to produce and harvest, poses a minuscule gene flow problem in the field, and the activity of the reagent is largely undiminished in stored grain. This work suggests that barley seed will be an ideal factory for the production of antibodies, diagnostic immunoreagents, vaccines and other pharmaceutical proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Globally, obesity and diabetes (particularly type 2 diabetes) represents a major challenge to world health. Despite decades of intense research efforts, the genetic basis involved in diabetes pathogenesis & conditions associated with obesity are still poorly understood. Recent advances have led to exciting new developments implicating epigenetics as an important mechanism underpinning diabetes and obesity related disease. One epigenetic mechanism known as the "histone code" describes the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as lysine acetyltransferases or KATs and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. Some of the known inhibitors of HDACs (HDACi) have also been shown to act as "chemical chaperones" to alleviate diabetic symptoms. In this review, we discuss the available evidence concerning the roles of HDACs in regulating chaperone function and how this may have implications in the management of diabetes. © 2009 Bentham Science Publishers Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a result of the growing adoption of Business Process Management (BPM) technology different stakeholders need to understand and agree upon the process models that are used to configure BPM systems. However, BPM users have problems dealing with the complexity of such models. Therefore, the challenge is to improve the comprehension of process models. While a substantial amount of literature is devoted to this topic, there is no overview of the various mechanisms that exist to deal with managing complexity in (large) process models. It is thus hard to obtain comparative insight into the degree of support offered for various complexity reducing mechanisms by state-of-the-art languages and tools. This paper focuses on complexity reduction mechanisms that affect the abstract syntax of a process model, i.e. the structure of a process model. These mechanisms are captured as patterns, so that they can be described in their most general form and in a language- and tool-independent manner. The paper concludes with a comparative overview of the degree of support for these patterns offered by state-of-the-art languages and language implementations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The macerals in bituminous coals with varying organic sulfur content from the Early Permian Greta Coal Measures at three locations (Southland Colliery, Drayton Colliery and the Cranky Corner Basin), in and around the Sydney Basin (Australia), have been studied using light-element electron microprobe (EMP) analysis and micro-ATR–FTIR. Electron microprobe analysis of individual macerals reveals that the vitrinite in both the Cranky Corner Basin and Drayton Colliery (Puxtrees seam) samples have similar carbon contents (ca. 78% C in telocollinite), suggesting that they are of equivalent rank. However, the Cranky Corner coals have anomalously low vitrinite reflectance (down to 0.45%) vs. the Drayton materials (ca. 0.7%). They also have very high organic S content (3–6.5%) and lower O content (ca. 10%) than the equivalent macerals in the Drayton sample (0.7% S and 15.6% O). A study was carried out to investigate the impacts of the high organic S on the functional groups of the macerals in these two otherwise iso-rank, stratigraphically-equivalent seams. An iso-rank low-S coal from the overlying Wittingham Coal Measures near Muswellbrook and coals of slightly higher rank from the Greta Coal Measures at Southland Colliery near Cessnock were also evaluated using the same techniques to extend the data set. Although the telocollinite in the Drayton and Cranky Corner coals have very similar carbon content (ca.78% C), the ATR–FTIR spectra of the vitrinite and inertinite macerals in these respectively low S and high S coals show some distinct differences in IR absorbance from various aliphatic and aromatic functional groups. The differences in absorbance of the aliphatic stretching bands (2800–3000 cm−1) and the aromatic carbon (CC) peak at 1606 cm−1 are very obvious. Compared to that of the Drayton sample (0.7% S and 15% O), the telocollinite of the Cranky Corner coal (6% S and 10% O) clearly shows: (i) less absorbance from OH groups, represented by a broad region around 3553 cm−1, (ii) much stronger aliphatic C–H absorbance (stretching modes around 3000–2800 cm−1 and bending modes around 1442 cm−1) and (iii) less absorbance from aromatic carbon functional groups (peaking at 1606 cm−1). Evaluation of the iso-rank Drayton and Cranky Corner coals shows that: (i) the aliphatic C–H absorbances decrease with increasing oxygen content but increase with increasing organic S content and (ii) the aromatic H to aliphatic H ratio (Har/Hali) for the telocollinite increases with (organic) O%, but decreases progressively with increasing organic S. The high organic S content in the maceral appears to be accompanied by a greater proportion of aliphatic functional groups, possibly as a result of some of the O within maceral ring structures in the high S coal samples being replaced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical and physical restraints are frequently used in the intensive care unit (ICU) to control agitated patients and to prevent self-harm and unplanned extubations. Published work relating to the numerous issues of the care and treatment strategies for these patients remains conflicting and unclear. Literature regarding sedation and chemical restraint reveals a trend towards management with lighter sedation, use of sedation assessment tools and sedation protocols. It remains unclear which treatment is best for agitated and delirious patients, and the evidence on the effect of sedation is conflicting. A large portion of the literature on the use of physical restraint is from general hospital wards and residential homes, and not from the ICU environment. The purpose of this paper is to provide a summary of the existing literature on the use of physical and chemical restraints in the ICU setting. In Part 1 of this two-part paper, the evidence on chemical and physical restraints is explored with specific focus on definition of terms, unplanned

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important goal of the care for the mechanically ventilated patient is to minimize patient discomfort and anxiety. This is partly achieved by frequent use of chemical and physical restraints. The majority of patients in intensive care will receive some form of sedation. The goal and use of sedation has changed considerably over the past few decades with literature evidencing trends toward overall lighter sedation levels and daily interruption of sedation. Conversely, the use of physical restraint for the ventilated patient in ICU differs considerably between nations and continents. A large portion of the literature on the use of physical restraint is from general hospital wards and residential homes, and not from the ICU environment. Recent literature suggests minimal use of physical restraint in the ICU, and that reduction programmes have been initiated. However, very few papers illuminate the patient's experience of physical and chemical restraints as a treatment strategy. In Part 1 of this two-part review, the evidence on chemical and physical restraints was explored with specific focus on definitions of terms, unplanned extubation, agitation, delirium as well as the impact of nurse–patient ratios in the ICU on these issues. This paper, Part 2, examines the evidence related to chemical and physical restraints from the mechanically ventilated patient's perspective.