41 resultados para Charleston Harbor
em Queensland University of Technology - ePrints Archive
Resumo:
Recent studies have shown that human papillomavirus (HPV) DNA can be found in circulating blood, including peripheral blood mononuclear cells (PBMCs), sera, plasma, and arterial cord blood. In light of these findings, DNA extracted from PBMCs from healthy blood donors were examined in order to determine how common HPV DNA is in blood of healthy individuals. Blood samples were collected from 180 healthy male blood donors (18-76 years old) through the Australian Red Cross Blood Services. Genomic DNA was extracted and specimens were tested for HPV DNA by PCR using a broad range primer pair. Positive samples were HPV-type determined by cloning and sequencing. HPV DNA was found in 8.3% (15/180) of the blood donors. A wide variety of different HPV types were isolated from the PBMCs; belonging to the cutaneous beta and gamma papillomavirus genera and mucosal alpha papillomaviruses. High-risk HPV types that are linked to cancer development were detected in 1.7% (3/180) of the PBMCs. Blood was also collected from a healthy HPV-positive 44-year-old male on four different occasions in order to determine which blood cell fractions harbor HPV. PBMCs treated with trypsin were negative for HPV, while non-trypsinized PBMCs were HPV-positive. This suggests that the HPV in blood is attached to the outside of blood cells via a protein-containing moiety. HPV was also isolated in the B cells, dendritic cells, NK cells, and neutrophils. To conclude, HPV present in PBMCs could represent a reservoir of virus and a potential new route of transmission.
Resumo:
The urban waterfront may be regarded as the littoral frontier of human settlement. Typically, over the years, it advances, sometimes retreats, where terrestrial and aquatic processes interact and frequently contest this margin of occupation. Because most towns and cities are sited beside water bodies, many of these urban centers on or close to the sea, their physical expansion is constrained by the existence of aquatic areas in one or more directions from the core. It is usually much easier for new urban development to occur along or inland from the waterfront. Where other physical constraints, such as rugged hills or mountains, make expansion difficult or expensive, building at greater densities or construction on steep slopes is a common response. This kind of development, though technically feasible, is usually more expensive than construction on level or gently sloping land, however. Moreover, there are many reasons for developing along the shore or riverfront in preference to using sites further inland. The high cost of developing existing dry land that presents serious construction difficulties is one reason for creating new land from adjacent areas that are permanently or periodically under water. Another reason is the relatively high value of artificially created land close to the urban centre when compared with the value of existing developable space at a greater distance inland. The creation of space for development is not the only motivation for urban expansion into aquatic areas. Commonly, urban places on the margins of the sea, estuaries, rivers or great lakes are, or were once, ports where shipping played an important role in the economy. The demand for deep waterfronts to allow ships to berth and for adjacent space to accommodate various port facilities has encouraged the advance of the urban land area across marginal shallows in ports around the world. The space and locational demands of port related industry and commerce, too, have contributed to this process. Often closely related to these developments is the generation of waste, including domestic refuse, unwanted industrial by-products, site formation and demolition debris and harbor dredgings. From ancient times, the foreshore has been used as a disposal area for waste from nearby settlements, a practice that continues on a huge scale today. Land formed in this way has long been used for urban development, despite problems that can arise from the nature of the dumped material and the way in which it is deposited. Disposal of waste material is a major factor in the creation of new urban land. Pollution of the foreshore and other water margin wetlands in this way encouraged the idea that the reclamation of these areas may be desirable on public health grounds. With reference to examples from various parts of the world, the historical development of the urban littoral frontier and its effects on the morphology and character of towns and cities are illustrated and discussed. The threat of rising sea levels and the heritage value of many waterfront areas are other considerations that are addressed.
Resumo:
In this paper, we present a control strategy design technique for an autonomous underwater vehicle based on solutions to the motion planning problem derived from differential geometric methods. The motion planning problem is motivated by the practical application of surveying the hull of a ship for implications of harbor and port security. In recent years, engineers and researchers have been collaborating on automating ship hull inspections by employing autonomous vehicles. Despite the progresses made, human intervention is still necessary at this stage. To increase the functionality of these autonomous systems, we focus on developing model-based control strategies for the survey missions around challenging regions, such as the bulbous bow region of a ship. Recent advances in differential geometry have given rise to the field of geometric control theory. This has proven to be an effective framework for control strategy design for mechanical systems, and has recently been extended to applications for underwater vehicles. Advantages of geometric control theory include the exploitation of symmetries and nonlinearities inherent to the system. Here, we examine the posed inspection problem from a path planning viewpoint, applying recently developed techniques from the field of differential geometric control theory to design the control strategies that steer the vehicle along the prescribed path. Three potential scenarios for surveying a ship?s bulbous bow region are motivated for path planning applications. For each scenario, we compute the control strategy and implement it onto a test-bed vehicle. Experimental results are analyzed and compared with theoretical predictions.
Resumo:
Mobile sensor platforms such as Autonomous Underwater Vehicles (AUVs) and robotic surface vessels, combined with static moored sensors compose a diverse sensor network that is able to provide macroscopic environmental analysis tool for ocean researchers. Working as a cohesive networked unit, the static buoys are always online, and provide insight as to the time and locations where a federated, mobile robot team should be deployed to effectively perform large scale spatiotemporal sampling on demand. Such a system can provide pertinent in situ measurements to marine biologists whom can then advise policy makers on critical environmental issues. This poster presents recent field deployment activity of AUVs demonstrating the effectiveness of our embedded communication network infrastructure throughout southern California coastal waters. We also report on progress towards real-time, web-streaming data from the multiple sampling locations and mobile sensor platforms. Static monitoring sites included in this presentation detail the network nodes positioned at Redondo Beach and Marina Del Ray. One of the deployed mobile sensors highlighted here are autonomous Slocum gliders. These nodes operate in the open ocean for periods as long as one month. The gliders are connected to the network via a Freewave radio modem network composed of multiple coastal base-stations. This increases the efficiency of deployment missions by reducing operational expenses via reduced reliability on satellite phones for communication, as well as increasing the rate and amount of data that can be transferred. Another mobile sensor platform presented in this study are the autonomous robotic boats. These platforms are utilized for harbor and littoral zone studies, and are capable of performing multi-robot coordination while observing known communication constraints. All of these pieces fit together to present an overview of ongoing collaborative work to develop an autonomous, region-wide, coastal environmental observation and monitoring sensor network.
Resumo:
The Subtropical Design Handbook for Planners is primarily intended to provide advice in developing planning schemes to achieve the South East Queensland Regional Plan’s vision. This calls for ‘development which is sustainable and well-designed, and where the subtropical character of the region is recognised and reinforced’.
Resumo:
The Wilms’ tumor suppressor protein WT1 is a transcriptional regulator involved in differentiation and the regulation of cell growth. WT1 is subject to alternative splicing, one isoform including a 17–amino acid region that is specific to mammals. The function of this 17–amino acid insertion is not clear, however. Here, we describe a transcriptional activation domain in WT1 that is specific to the WT1 splice isoform that contains the 17–amino acid insertion. We show that the function of this domain in transcriptional activation is dependent on a specific interaction with the prostate apoptosis response factor par4. A mutation in WT1 found in Wilms’ tumor disturbs the interaction with par4 and disrupts the function of the activation domain. Analysis of WT1 derivatives in cells treated to induce par4 expression showed a strong correlation between the transcription function of the WT1 17–amino acid insertion and the ability of WT1 to regulate cell survival and proliferation. Our results provide a molecular mechanism by which alternative splicing of WT1 can regulate cell growth in development and disease.
Resumo:
In 1986 the then United States Secretary of State George Shultz asserted that: It is absurd to argue that international law prohibits us from capturing terrorists in international waters or airspace; from attacking them on the soil of other nations, even for the purpose of rescuing hostages; or from using force against states that support, train and harbor terrorists or guerrillas. At that time the United States’ claim of a right to use military force in self-defence against terrorism2 received little support from other states.3 The predominant view then was that terrorist attacks committed by private or non-state actors were a form of criminal activity to be combated through domestic and international criminal justice mechanisms. The notion that such terrorist acts should be treated as ‘armed attacks’ triggering a victim state’s right of self-defence was not accepted by the majority of states. To suggest, as Shultz had done, that a state not directly responsible for terrorist acts could have its territorial integrity violated by military action targeting terrorists located within that state, was a controversial proposition in 1986. However, some fifteen years later, when the United States and a coalition of allies launched a military campaign in Afghanistan following the 11 September 2001 (hereafter ‘9/11’) terrorist attacks, there was virtually unanimous international support for the use of force.
Resumo:
Plasmodium spp. parasites cause malaria in 300 to 500 million individuals each year. Disease occurs during the blood-stage of the parasite’s life cycle, where the parasite is thought to replicate exclusively within erythrocytes. Infected individuals can also suffer relapses after several years, from Plasmodium vivax and Plasmodium ovale surviving in hepatocytes. Plasmodium falciparum and Plasmodium malariae can also persist after the original bout of infection has apparently cleared in the blood, suggesting that host cells other than erythrocytes (but not hepatocytes) may harbor these blood-stage parasites, thereby assisting their escape from host immunity. Using blood stage transgenic Plasmodium berghei-expressing GFP (PbGFP) to track parasites in host cells, we found that the parasite had a tropism for CD317+ dendritic cells. Other studies using confocal microscopy, in vitro cultures, and cell transfer studies showed that blood-stage parasites could infect, survive, and replicate within CD317+ dendritic cells, and that small numbers of these cells released parasites infectious for erythrocytes in vivo. These data have identified a unique survival strategy for blood-stage Plasmodium, which has significant implications for understanding the escape of Plasmodium spp. from immune-surveillance and for vaccine development.
Resumo:
In humans, more than 30,000 chimeric transcripts originating from 23,686 genes have been identified. The mechanisms and association of chimeric transcripts arising from chromosomal rearrangements with cancer are well established, but much remains unknown regarding the biogenesis and importance of other chimeric transcripts that arise from nongenomic alterations. Recently, a SLC45A3–ELK4 chimera has been shown to be androgen-regulated, and is overexpressed in metastatic or high-grade prostate tumors relative to local prostate cancers. Here, we characterize the expression of a KLK4 cis sense–antisense chimeric transcript, and show other examples in prostate cancer. Using non-protein-coding microarray analyses, we initially identified an androgen-regulated antisense transcript within the 3′ untranslated region of the KLK4 gene in LNCaP cells. The KLK4 cis-NAT was validated by strand-specific linker-mediated RT-PCR and Northern blotting. Characterization of the KLK4 cis-NAT by 5′ and 3′ rapid amplification of cDNA ends (RACE) revealed that this transcript forms multiple fusions with the KLK4 sense transcript. Lack of KLK4 antisense promoter activity using reporter assays suggests that these transcripts are unlikely to arise from a trans-splicing mechanism. 5′ RACE and analyses of deep sequencing data from LNCaP cells treated ±androgens revealed six high-confidence sense–antisense chimeras of which three were supported by the cDNA databases. In this study, we have shown complex gene expression at the KLK4 locus that might be a hallmark of cis sense–antisense chimeric transcription.
Resumo:
We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.
Resumo:
This paper describes the cloning and characterization of a new member of the vascular endothelial growth factor (VEGF) gene family, which we have designated VRF for VEGF-related-factor. Sequencing of cDNAs from a human fetal brain library and RT-PCR products from normal and tumor tissue cDNA pools indicate two alternatively spliced messages with open reading frames of 621 and 564 bp, respectively. The predicted proteins differ at their carboxyl ends resulting from a shift in the open reading frame. Both isoforms show strong homology to VEGF at their amino termini, but only the shorter isoform maintains homology to VEGF at its carboxyl terminus and conserves all 16 cysteine residues of VEGF165. Similarity comparisons of this isoform revealed overall protein identity of 48% and conservative substitution of 69% with VEGF189. VRF is predicted to contain a signal peptide, suggesting that it may be a secreted factor. The VRF gene maps to the D11S750 locus at chromosome band 11q13, and the protein coding region, spanning approximately 5 kb, is comprised of 8 exons that range in size from 36 to 431 bp. Exons 6 and 7 are contiguous and the two isoforms of VRF arise through alternate splicing of exon 6. VRF appears to be ubiquitously expressed as two transcripts of 2.0 and 5.5 kb; the level of expression is similar among normal and malignant tissues.
Resumo:
Loss of the short arm of chromosome 1 is frequently observed in many tumor types, including melanoma. We recently localized a third melanoma susceptibility locus to chromosome band 1p22. Critical recombinants in linked families localized the gene to a 15-Mb region between D1S430 and D1S2664. To map the locus more finely we have performed studies to assess allelic loss across the region in a panel of melanomas from 1p22-linked families, sporadic melanomas, and melanoma cell lines. Eighty percent of familial melanomas exhibited loss of heterozygosity (LOH) within the region, with a smallest region of overlapping deletions (SRO) of 9 Mb between D1S207 and D1S435. This high frequency of LOH makes it very likely that the susceptibility locus is a tumor suppressor. In sporadic tumors, four SROs were defined. SRO1 and SRO2 map within the critical recombinant and familial tumor region, indicating that one or the other is likely to harbor the susceptibility gene. However, SRO3 may also be significant because it overlaps with the markers with the highest 2-point LOD score (D1S2776), part of the linkage recombinant region, and the critical region defined in mesothelioma. The candidate genes PRKCL2 and GTF2B, within SRO2, and TGFBR3, CDC7, and EVI5, in a broad region encompassing SRO3, were screened in 1p22-linked melanoma kindreds, but no coding mutations were detected. Allelic loss in melanoma cell lines was significantly less frequent than in fresh tumors, indicating that this gene may not be involved late in progression, such as in overriding cellular senescence, necessary for the propagation of melanoma cells in culture.
Resumo:
Biochemical reactions underlying genetic regulation are often modelled as a continuous-time, discrete-state, Markov process, and the evolution of the associated probability density is described by the so-called chemical master equation (CME). However the CME is typically difficult to solve, since the state-space involved can be very large or even countably infinite. Recently a finite state projection method (FSP) that truncates the state-space was suggested and shown to be effective in an example of a model of the Pap-pili epigenetic switch. However in this example, both the model and the final time at which the solution was computed, were relatively small. Presented here is a Krylov FSP algorithm based on a combination of state-space truncation and inexact matrix-vector product routines. This allows larger-scale models to be studied and solutions for larger final times to be computed in a realistic execution time. Additionally the new method computes the solution at intermediate times at virtually no extra cost, since it is derived from Krylov-type methods for computing matrix exponentials. For the purpose of comparison the new algorithm is applied to the model of the Pap-pili epigenetic switch, where the original FSP was first demonstrated. Also the method is applied to a more sophisticated model of regulated transcription. Numerical results indicate that the new approach is significantly faster and extendable to larger biological models.
Resumo:
An increase in the likelihood of navigational collisions in port waters has put focus on the collision avoidance process in port traffic safety. The most widely used on-board collision avoidance system is the automatic radar plotting aid which is a passive warning system that triggers an alert based on the pilot’s pre-defined indicators of distance and time proximities at the closest point of approaches in encounters with nearby vessels. To better help pilot in decision making in close quarter situations, collision risk should be considered as a continuous monotonic function of the proximities and risk perception should be considered probabilistically. This paper derives an ordered probit regression model to study perceived collision risks. To illustrate the procedure, the risks perceived by Singapore port pilots were obtained to calibrate the regression model. The results demonstrate that a framework based on the probabilistic risk assessment model can be used to give a better understanding of collision risk and to define a more appropriate level of evasive actions.