307 resultados para Cerium oxide nanoparticles

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of a surface inner sphere electron transfer mechanism leading to the coating of gold via the surface reduction of gold(I) chloride on metal and semi-metal oxide nanoparticles was investigated. Silica and zinc oxide nanoparticles are known to have very different surface chemistry, potentially leading to a new class of gold coated nanoparticles. Monodisperse silica nanoparticles were synthesised by the well known Stöber protocol in conjunction with sonication. The nanoparticle size was regulated solely by varying the amount of ammonia solution added. The presence of surface hydroxyl groups was investigated by liquid proton NMR. The resultant nanoparticle size was directly measured by the use of TEM. The synthesised silica nanoparticles were dispersed in acetonitrile (MeCN) and added to a bis acetonitrile gold(I) co-ordination complex [Au(MeCN)2]+ in MeCN. The silica hydroxyl groups were deprotonated in the presence of MeCN generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]+ complex to undergo ligand exchange with the silica nanoparticles, which formed a surface co-ordination complex with reduction to gold(0), that proceeded by a surface inner sphere electron transfer mechanism. The residual [Au(MeCN)2]+ complex was allowed to react with water, disproportionating into gold(0) and gold(III) respectively, with gold(0) being added to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of gold(III) to gold(0) by ascorbic acid. This process generated a thin and uniform gold coating on the silica nanoparticles. This process was modified to include uniformly gold coated composite zinc oxide nanoparticles (Au@ZnO NPs) using surface co-ordination chemistry. AuCl dissolved in acetonitrile (MeCN) supplied chloride ions which were adsorbed onto ZnO NPs. The co-ordinated gold(I) was reduced on the ZnO surface to gold(0) by the inner sphere electron transfer mechanism. Addition of water disproportionated the remaining gold(I) to gold(0) and gold(III). Gold(0) bonded to gold(0) on the NP surface with gold(III) was reduced to gold(0) by ascorbic acid (ASC), which completed the gold coating process. This gold coating process of Au@ZnO NPs was modified to incorporate iodide instead of chloride. ZnO NPs were synthesised by the use of sodium oxide, zinc iodide and potassium iodide in refluxing basic ethanol with iodide controlling the presence of chemisorbed oxygen. These ZnO NPs were treated by the addition of gold(I) chloride dissolved in acetonitrile leaving chloride anions co-ordinated on the ZnO NP surface. This allowed acetonitrile ligands in the added [Au(MeCN)2]+ complex to surface exchange with adsorbed chloride from the dissolved AuCl on the ZnO NP surface. Gold(I) was then reduced by the surface inner sphere electron transfer mechanism. The presence of the reduced gold on the ZnO NPs allowed adsorption of iodide to generate a uniform deposition of gold onto the ZnO NP surface without the use of additional reducing agents or heat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platey grains of cubic Bi2O3, α-Bi2O3, and Bi2O2.75 nanograins were associated with chondritic porous interplanetary dust particles W7029C1, W7029E5, and 2011C2 that were collected in the stratosphere at 17-19 km altitude. Similar Bi oxide nanograins were present in the upper stratosphere during May 1985. These grains are linked to the plumes of several major volcanic eruptions during the early 1980s that injected material into the stratosphere. The mass of sulfur from these eruptions is a proxy for the mass of stratospheric Bi from which we derive the particle number densities (p m -3) for "average Bi2O3 nanograins" due to this volcanic activity and those necessary to contaminate the extraterrestrial chondritic porous interplanetary dust particles via collisional sticking. The match between both values supports the idea that Bi2O3 nanograins of volcanic origin could contaminate interplanetary dust particles in the Earth's stratosphere. Copyright 1997 by the American Geophysical Union.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particles having at least regions of at least one metal oxide having nano-sized grains are produced by providing particles of a material having an initial, nonequiaxed particle shape, prepg. a mixt. of these particles and at last one metal oxide precursor, and treating the mixt. such that the precursor reacts with the particles. The process can be a co-pptn. process, sol-gel synthesis, micro-emulsion method, surfactant-based process, or a process that uses polymers. Complex metal oxide nanoparticles are produced by (a) prepg. a soln. contg. metal cations, (b) mixing the soln. with a surfactant to form micelles within the soln., and (c) heating the micellar liq. to form metal oxide and to remove the surfactant. The formed metal oxide particles have essentially the same morphol. (particle size and shape) as the initial morphol. of the material particles provided. [on SciFinder(R)]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Luminescent ZnO nanoparticles have been synthesized on silicon and quartz substrates under extremely non-equilibrium conditions of energetic ion condensation during the post-focus phase in a dense plasma focus (DPF) device. Ar+, O+, Zn+ and ZnO+ ions are generated as a result of interaction of hot and dense argon plasma focus with the surfaces of ZnO pellets placed at the anode. It is found that the sizes, structural and photoluminescence (PL) properties of the ZnO nanoparticles appear to be quite different on Si(1 0 0) and quartz substrates. The results of x-ray diffractometry and atomic force microscopy show that the ZnO nanoparticles are crystalline and range in size from 5-7 nm on Si(1 0 0) substrates to 10-38 nm on quartz substrates. Room-temperature PL studies reveal strong peaks related to excitonic bands and defects for the ZnO nanoparticles deposited on Si (1 0 0), whereas the excitonic bands are not excited in the quartz substrate case. Raman studies indicate the presence of E2 (high) mode for ZnO nanoparticles deposited on Si(1 0 0).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The self-assembling behavior and microscopic structure of zinc oxide nanoparticle Langmuir-Blodgett monolayer films were investigated for the case of zinc oxide nanoparticles coated with a hydrophobic layer of dodecanethiol. Evolution of nanoparticle film structure as a function of surface pressure (π) at the air-water interface was monitored in situ using Brewster’s angle microscopy, where it was determined that π=16 mN/m produced near-defect-free monolayer films. Transmission electron micrographs of drop-cast and Langmuir-Schaefer deposited films of the dodecanethiol-coated zinc oxide nanoparticles revealed that the nanoparticle preparation method yielded a microscopic structure that consisted of one-dimensional rodlike assemblies of nanoparticles with typical dimensions of 25 x 400 nm, encased in the organic dodecanethiol layer. These nanoparticle-containing rodlike micelles were aligned into ordered arrangements of parallel rods using the Langmuir-Blodgett technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, interest in tissue engineering and its solutions has increased considerably. In particular, scaffolds have become fundamental tools in bone graft substitution and are used in combination with a variety of bio-agents. However, a long-standing problem in the use of these conventional scaffolds lies in the impossibility of re-loading the scaffold with the bio-agents after implantation. This work introduces the magnetic scaffold as a conceptually new solution. The magnetic scaffold is able, via magnetic driving, to attract and take up in vivo growth factors, stem cells or other bio-agents bound to magnetic particles. The authors succeeded in developing a simple and inexpensive technique able to transform standard commercial scaffolds made of hydroxyapatite and collagen in magnetic scaffolds. This innovative process involves dip-coating of the scaffolds in aqueous ferrofluids containing iron oxide nanoparticles coated with various biopolymers. After dip-coating, the nanoparticles are integrated into the structure of the scaffolds, providing the latter with magnetization values as high as 15 emu g�1 at 10 kOe. These values are suitable for generating magnetic gradients, enabling magnetic guiding in the vicinity and inside the scaffold. The magnetic scaffolds do not suffer from any structural damage during the process, maintaining their specific porosity and shape. Moreover, they do not release magnetic particles under a constant flow of simulated body fluids over a period of 8 days. Finally, preliminary studies indicate the ability of the magnetic scaffolds to support adhesion and proliferation of human bone marrow stem cells in vitro. Hence, this new type of scaffold is a valuable candidate for tissue engineering applications, featuring a novel magnetic guiding option.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pharmacological MRI (phMRI) techniques can be used to monitor the neurophysiological effects of central nervous system (CNS) active drugs. In this study, we investigated whether dynamic susceptibility contrast (DSC) perfusion imaging employing the use of superparamagnetic iron oxide nanoparticles (Resovist) could be used to measure hemodynamic response to d-amphetamine challenge in human subjects at both 1.5 and 4 T. Significant changes in cerebral blood flow (CBF) were found in focal regions associated with the nigrostriatal circuit and mesolimbic and mesocortical dopaminergic pathways. More significant CBF responses were found at higher field strength, mainly within striatal structures. The results from this study indicate that DSC perfusion imaging using Resovist can be used to assess the efficacy of CNS-active drugs and may play a role in the development of novel psychiatric therapies at the preclinical level. © 2005 Wiley-Liss, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim Evaluate potential of newly-developed, biocompatible iron oxide magnetic nanoparticles (MNPs) conjugated with J591, an antibody to an extracellular epitope of prostate specific membrane antigen (PSMA), to enhance MRI of prostate cancer (PCa). Materials & Methods Specific binding to PSMA by J591-MNP was investigated in vitro. MRI studies were performed on orthotopic tumor-bearing NOD.SCID mice 2h and 24hr after intravenous injection of J591-MNPs, or non-targeting MNPs. Results and Conclusions In vitro, MNPs did not affect PCa cell viability, and conjugation to J591 did not compromise antibody specificity and enhanced cellular iron uptake. In vivo, PSMA-targeting MNPs increased MR contrast of tumors, but not by non-targeting MNPs. This provides proof-of-concept that PSMA-targeting MNPs have potential to enhance MR detection/localization of PCa.,

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction Novel imaging techniques for prostate cancer (PCa) are required to improve staging and real-time assessment of therapeutic response. We performed preclinical evaluation of newly-developed, biocompatible magnetic nanoparticles (MNPs) conjugated with J591, an antibody specific for prostate specific membrane antigen (PSMA), to enhance magnetic resonance imaging (MRI) of PCa. PSMA is expressed on ∼90% of PCa, including those that are castrate-resistant, rendering it as a rational target for PCa imaging. Materials and Methods The specificity of J591 for PSMA was confirmed by flow cytometric analysis of several PCa cell lines of known PSMA status. MNPs were prepared, engineered to the appropriate size, labeled with DiR fluorophore, and their toxicity to a panel of PC cells was assessed by in vitro Alamar Blue assay. Immunohistochemistry, fluorescence microscopy and Prussian Blue staining (iron uptake) were used to evaluate PSMA specificity of J591-MNP conjugates. In vivo MRI studies (16.4T MRI system) were performed using live immunodeficient mice bearing orthotopic LNCaP xenografts and injected intravenously with J591-MNPs or MNPs alone. Results MNPs were non-toxic to PCa cells. J591-MNP conjugates showed no compromise in specificity of binding to PSMA+ cells and showed enhanced iron uptake compared with MNPs alone. In vivo, tumour targeting (significant MR image contrast) was evident in mice injected with J591-MNPs, but not MNPs alone. Resected tumours from targeted mice had an accumulation of MNPs, not seen in normal control prostate. Conclusions Application of PSMA-targeting MNPs into conventional MRI has potential to enhance PCa detection and localization in real-time, improving patient management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that boehmite (AlOOH) nanofibers formed in the presence of nonionic poly(ethylene oxide) (PEO) surfactant at 373 K. A novel approach is proposed in this study for the growth of the boehmite nanofibers: when fresh aluminum hydrate precipitate was added at regular interval to initial mixture of boehmite and PEO surfactant at 373 K, the nanofibers grow from 40 to 50 nm long to over 100 nm. It is believed that the surfactant micelles play an important role in the nanofiber growth: directing the assembly of aluminum hydrate particles through hydrogen bonding with the hydroxyls on the surface of aluminum hydrate particles. Meanwhile a gradual improvement in the crystallinity of the fibers during growth is observed and attributed to the Ostwald ripening process. This approach allows us to precisely control the size and morphology of boehmite nanofibers using soft chemical methods and could be useful for low temperature, aqueous syntheses of other oxide nanomaterials with tailorable structural specificity such as size, dimension and morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New composite doped poly (ethylene oxide) polymer electrolyte was developed using 2-mercapto benzimidazole as plasticizer and iodide/triiodide as redox couple. The fabrication of the cell involves Poly(ethylene oxide)/ 2-mercapto benzimidazole / iodide/triiodide as polymer electrolyte in dye-sensitized solar cell fabricated with N3 dye and TiO2 nanoparticles as the photoanode and Platinum coated FTO (fluorine doped SnO2) as counter electrode. The current-volatage characteristics under simulated sunlight AM1.5 shows a short circuit current Isc of 8.7mA and open circuit photovoltage 508 mV. The conductivity measurements for the new polymer electrolyte and the photoelectrochemical measurments were carried out systematically. In 2-mercapto benzimidazole the electron rich sulphur and nitrogen atoms, act as pi-electron donors that form good interaction with iodine which plays a vital role in the performance of the fabricated dye-sensitized solar cells. The resonance effect increases the stability of the cell to a considerable extent. These results suggest that the new composite polymer electrolyte performs as a promising new doped polymer-electrolyte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a range of nanomaterials have been synthesised based on metal oxyhydroxides MO(OH), where M=Al, Co, Cr, etc. Through a self-assembly hydrothermal route, metal oxyhydroxide nanomaterials with various morphologies were successfully synthesised: one dimensional boehmite (AlO(OH)) nanofibres, zero dimensional indium hydroxide (In(OH)3) nanocubes and chromium oxyhydroxide (CrO(OH)) nanoparticles, as well as two dimensional cobalt hydroxide and oxyhydroxide (Co(OH)2 & CoO(OH)) nanodiscs. In order to control the synthetic nanomaterial morphology and growth, several factors were investigated including cation concentration, temperature, hydrothermal treatment time, and pH. Metal ion doping is a promising technique to modify and control the properties of materials by intentionally introducing impurities or defects into the material. Chromium was successfully applied as a dopant for fabricating doped boehmite nanofibres. The thermal stability of the boehmite nanofibres was enhanced by chromium doping, and the photoluminescence property was introduced to the chromium doped alumina nanofibres. Doping proved to be an efficient method to modify and functionalize nanomaterials. The synthesised nanomaterials were fully characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), scanning electron microscopy (SEM), BET specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TGA). Hot-stage Raman and infrared emission spectroscopy were applied to study the chemical reactions during dehydration and dehydroxylation. The advantage of these techniques is that the changes in molecular structure can be followed in situ and at the elevated temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO2 produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO2 down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO2 compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO2 target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence.