2 resultados para Centrosomes

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cell cycle is a carefully choreographed series of phases that when executed successfully will allow the complete replication of the genome and the equal division of the genome and other cellular content into two independent daughter cells. The inability of the cell to execute cell division successfully can result in either checkpoint activation to allow repair and/or apoptosis and/or mutations/errors that may or may not lead to tumourgenesis. Cyclin A/CDK2 is the primary cyclin/CDK regulating G2 phase progression of the cell cycle. Cyclin A/CDK2 activity peaks in G2 phase and its inhibition causes a G2 phase delay that we have termed 'the cyclin A/CDK2 dependent G2 delay'. Understanding the key pathways that are involved in the cyclin A/CDK2 dependent G2 delay has been the primary focus of this study. Characterising the cyclin A/CDK2 dependent G2 delay revealed accumulated levels of the inactive form of the mitotic regulator, cyclin B/CDK1. Surprisingly, there was also increased microtubule nucleation at the centrosomes, and the centrosomes stained for markers of cyclin B/CDK1 activity. Both microtubule nucleation at the centrosomes and phosphoprotein markers were lost with short-term treatment of CDK1/2 inhibition. Cyclin A/CDK2 localised at the centrosomes in late G2 phase after separation of the centrosomes but before the start of prophase. Thus G2 phase cyclin A/CDK2 controls the timing of entry into mitosis by controlling the subsequent activation of cyclin B/CDK1, but also has an unexpected role in coordinating the activation of cyclin B/CDK1 at the centrosome and in the nucleus. In addition to regulating the timing of cyclin B/CDK1 activation and entry into mitosis in the unperturbed cell cycle, cyclin A/CDK2 also was shown to have a role in G2 phase checkpoint recovery. Known G2 phase regulators were investigated to determine whether they had a role in imposing the cyclin A/ CDK2 dependent G2 delay. Examination of the critical G2 checkpoint arrest protein, Chk1, which also has a role during unperturbed G2/M phases revealed the presence of activated Chk1 in G2 phase, in a range of cell lines. Activated Chk1 levels were shown to accumulate in cyclin A/CDK2 depleted/inhibited cells. Further investigations revealed that Chk1, but not Chk2, depletion could reverse the cyclin A/CDK2 dependent G2 delay. It was confirmed that the accumulative activation of Chk1 was not a consequence of DNA damage induced by cyclin A depletion. The potential of cyclin A/CDK2 to regulate Chk1 revealed that the inhibitory phosphorylations, Ser286 and Ser301, were not directly catalysed by cyclin A/CDK2 in G2 phase to regulate mitotic entry. It appeared that the ability of cyclin A/CDK2 to regulate cyclin B/CDK1 activation impacted cyclin B/CDK1s phosphorylation of Chk1 on Ser286 and Ser301, thereby contributing to the delay in G2/M phase progression. Chk1 inhibition/depletion partially abrogated the cyclin A/CDK2 dependent G2 delay, and was less effective in abrogating G2 phase checkpoint suggesting that other cyclin A/CDK2 dependent mechanisms contributed to these roles of cyclin A/CDK2. In an attempt to identify these other contributing factors another G2/M phase regulator known to be regulated by cyclin A/CDK2, Cdh1 and its substrates Plk1 and Claspin were examined. Cdh1 levels were reduced in cyclin A/CDK2 depleted/inhibited cells although this had little effect on Plk1, a known Cdh1 substrate. However, the level of another substrate, Claspin, was increased. Cdh1 depletion mimicked the effect of cyclin A depletion but to a weaker extent and was sufficient at increasing Claspin levels similar to the increase caused by cyclin A depletion. Co-depletion of cyclin A and Claspin blocked the accumulation of activated Chk1 normally seen with cyclin A depletion alone. However Claspin depletion alone did not reduce the cyclin A/CDK2 dependent G2 delay but this is likely to be a result of inhibition of S phase roles of Claspin. Together, these data suggest that cyclin A/CDK2 regulates a number of different mechanisms that contribute to G2/M phase progression. Here it has been demonstrated that in normal G2/M progression and possibly to a lesser extent in G2 phase checkpoint recovery, cyclin A/CDK2 regulates the level of Cdh1 which in turn affects at least one of its substrates, Claspin, and consequently results in the increased level of activated Chk1 observed. However, the involvement of Cdh1 and Claspin alone does not explain the G2 phase delay observed with cyclin A/CDK2 depletion/inhibition. It is likely that other mechanisms, possibly including cyclin A/CDK2 regulation of Wee1 and FoxM1, as reported by others, combine with the mechanism described here to regulate normal G2/M phase progression and G2 phase checkpoint recovery. These findings support the critical role for cyclin A/CDK2 in regulating progression into mitosis and suggest that upstream regulators of cyclin A/CDK2 activation will also be critical controllers of this cell cycle transition. The pathways that work to co-ordinate cell cycle progression are very intricate and deciphering these pathways, required for normal cell cycle progression, is key to understanding tumour development. By understanding cell cycle regulatory pathways it will allow the identification of the pathway/s and their mechanism/s that become affected in tumourgenesis. This will lead to the development of better targeted therapies, inferring better efficacy with fewer side effects than commonly seen with the use of traditional therapies, such as chemotherapy. Furthermore, this has the potential to positively impact the development of personalised medicines and the customisation of healthcare.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proper function of the spindle is crucial to the high fidelity of chromosome segregation and is indispensable for tumor suppression in humans. Centrobin is a recently identified centrosomal protein that has a role in stabilizing the microtubule structure. Here we functionally characterize the defects in centrosome integrity and spindle assembly in Centrobin-depleted cells. Centrobin-depleted cells show a range of spindle abnormalities including unfocused poles that are not associated with centrosomes, S-shaped spindles and mini spindles. These cells undergo mitotic arrest and subsequently often die by apoptosis, as determined by live cell imaging. Co-depletion of Mad2 relieves the mitotic arrest, indicating that cells arrest due to a failure to silence the spindle checkpoint in metaphase. Consistent with this, Centrobin-depleted metaphase cells stained positive for BubR1 and BubR1 S676. Staining with a panel of centrosome markers showed a loss of centrosome anchoring to the mitotic spindle. Furthermore, these cells show less cold-stable microtubules and a shorter distance between kinetochore pairs. These results show a requirement of Centrobin in maintaining centrosome integrity, which in turn promotes anchoring of mitotic spindle to the centrosomes. Furthermore, this anchoring is required for the stability of microtubule–kinetochore attachments and biogenesis of tension-ridden and properly functioning mitotic spindle.