133 resultados para Capitalismo industrial Agriculture
em Queensland University of Technology - ePrints Archive
Resumo:
Background: Periurban agriculture refers to agricultural practice occurring in areas with mixed rural and urban features. It is responsible 25% of the total gross value of economic production in Australia, despite only comprising 3% of the land used for agriculture. As populations grows and cities expand, they are constantly absorbing surrounding fringe areas, thus creating a new fringe, further from the city causing the periurban region to constantly shift outwards. Periurban regions are fundamental in the provision of fresh food to city populations and residential (and industrial) expansion taking over agricultural land has been noted as a major worldwide concern. Another major concern around the increase in urbanisation and resultant decrease in periurban agriculture is its potential effect on food security. Food security is the availability or access to nutritionally-adequate, culturally-relevant and safe foods in culturally-appropriate ways. Thus food insecurity occurs when access to or availability of these foods is compromised. There is an important level of connectedness between food security and food production and a decrease in periurban agriculture may have adverse effects on food security. A decrease in local, seasonal produce may result in a decrease in the availability of products and an increase in cost, as food must travel greater distances, incurring extra costs present at the consumer level. Currently, few Australian studies exist examining the change in periurban agriculture over time. Such information may prove useful for future health policy and interventions as well as infrastructure planning. The aim of this study is to investigate changes in periurban agriculture among capital cities of Australia. Methods: We compared data pertaining to selected commodities from the Australian Bureau of Statistics 2000-01 and 2005 -2006 Agricultural Census. This survey is distributed online or via mail on a five-yearly basis to approximately 175,000 Agricultural business to ascertain information on a range of factors, such as types of crops, livestock and land preparation practices. For the purpose of this study we compared the land being used for total crops, and cereal , oil seed, legume, fruit and vegetable crops separately. Data was analysed using repeated measures anova in spss. Results: Overall, total area available for crops in urbanised areas of Australia increased slightly by 1.8%. However, Sydney, Melbourne, Adelaide and Perth experienced decreases in the area available for fruit crops by 11%, 5%,and 4% respectively. Furthermore, Brisbane and Perth experienced decreases in land available for vegetable crops by 28% and 14% respectively. Finally, Sydney, Adelaide and Perth experienced decreases in land available for cereal crops by 10 – 79%. Conclusions: These findings suggest that population increases and consequent urban sprawl may be resulting in a decrease in peri-urban agriculture, specifically for several core food groups including fruit, breads and grain based foods. In doing so, access to or availability of these foods may be limited, and the cost of these foods is likely to increase, which may compromise food insecurity for certain sub-groups of the population.
Resumo:
This thesis presents the design process and the prototyping of a lightweight, modular robotic vehicle for the sustainable intensification of broadacre agriculture. Achieved by the joint operation of multiple autonomous vehicles to improve energy consumption, reduce labour, and increase efficiency in the application of inputs for the management of crops. The Small Robotic Farm Vehicle (SRFV) is a lightweight and energy efficient robotic vehicle with a configurable, modular design. It is capable of undertaking a range of agricultural tasks, including fertilising and weed management through mechanical intervention and precision spraying, whilst being more than an order of magnitude lower in weight than existing broadacre agricultural equipment.
Resumo:
In The Climate Change Review, Ross Garnaut emphasised that ‘Climate change and climate change mitigation will bring about major structural change in the agriculture, forestry and other land use sectors’. He provides this overview of the effects of climate change on food demand and supply: ‘Domestic food production in many developing countries will be at immediate risk of reductions in agricultural productivity due to crop failure, livestock loss, severe weather events and new patterns of pests and diseases.’ He observes that ‘Changes to local climate and water availability will be key determinants of where agricultural production occurs and what is produced.’ Gert Würtenberger has commented that modern plant breeding is particularly concerned with addressing larger issues about nutrition, food security and climate change: ‘Modern plant breeding has an increasing importance with regard to the continuously growing demand for plants for nutritional and feeding purposes as well as with regard to renewal energy sources and the challenges caused by climate changes.’ Moreover, he notes that there is a wide array of scientific and technological means of breeding new plant varieties: ‘Apart from classical breeding, technologies have an important role in the development of plants that satisfy the various requirements that industrial and agricultural challenges expect to be fulfilled.’ He comments: ‘Plant variety rights, as well as patents which protect such results, are of increasingly high importance to the breeders and enterprises involved in plant development programmes.’ There has been larger interest in the intersections between sustainable agriculture, environmental protection and food security. The debate over agricultural intellectual property is a polarised one, particularly between plant breeders, agricultural biotechnology companies and a range of environmentalist groups. Susan Sell comments that there are complex intellectual property battles surrounding agriculture: 'Seeds are at the centre of a complex political dynamic between stakeholders. Access to seeds concerns the balance between private rights and public obligations, private ownership and the public domain, and commercial versus humanitarian objectives.' Part I of this chapter considers debates in respect of plant breeders’ rights, food security and climate change in relation to the UPOV Convention 1991. Part II explores efforts by agricultural biotechnology companies to patent climate-ready crops. Part III considers the report of the Special Rapporteur for Food, Olivier De Schutter. It looks at a variety of options to encourage access to plant varieties with climate adaptive or mitigating properties.
Development of Thermally Comfortable Industrial Buildings with Effective Use of Computer Simulations