5 resultados para California. State Dairy Bureau
em Queensland University of Technology - ePrints Archive
Resumo:
Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.
Resumo:
This paper presents a road survey as part of a workshop conducted by the Texas Department of Transportation (TxDOT) to evaluate and improve the maintenance practices of the Texas highway system. Directors of maintenance from six peer states (California, Kansas, Georgia, Missouri, North Carolina, and Washington) were invited to this 3-day workshop. One of the important parts of this workshop was a Maintenance Test Section Survey (MTSS) to evaluate a number of pre-selected one-mile roadway sections. The workshop schedule allowed half a day to conduct the field survey and 34 sections were evaluated. Each of the evaluators was given a booklet and asked to rate the selected road sections. The goals of the MTSS were to: 1. Assess the threshold level at which maintenance activities are required as perceived by the evaluators from the peer states; 2. Assess the threshold level at which maintenance activities are required as perceived by evaluators from other TxDOT districts; and 3. Perform a pilot evaluation of the MTSS concept. This paper summarizes the information obtained from survey and discusses the major findings based on a statistical analysis of the data and comments from the survey participants.
Resumo:
The state of the practice in safety has advanced rapidly in recent years with the emergence of new tools and processes for improving selection of the most cost-effective safety countermeasures. However, many challenges prevent fair and objective comparisons of countermeasures applied across safety disciplines (e.g. engineering, emergency services, and behavioral measures). These countermeasures operate at different spatial scales, are funded often by different financial sources and agencies, and have associated costs and benefits that are difficult to estimate. This research proposes a methodology by which both behavioral and engineering safety investments are considered and compared in a specific local context. The methodology involves a multi-stage process that enables the analyst to select countermeasures that yield high benefits to costs, are targeted for a particular project, and that may involve costs and benefits that accrue over varying spatial and temporal scales. The methodology is illustrated using a case study from the Geary Boulevard Corridor in San Francisco, California. The case study illustrates that: 1) The methodology enables the identification and assessment of a wide range of safety investment types at the project level; 2) The nature of crash histories lend themselves to the selection of both behavioral and engineering investments, requiring cooperation across agencies; and 3) The results of the cost-benefit analysis are highly sensitive to cost and benefit assumptions, and thus listing and justification of all assumptions is required. It is recommended that a sensitivity analyses be conducted when there is large uncertainty surrounding cost and benefit assumptions.
Resumo:
Background Diabetes foot complications are a leading cause of overall avoidable hospital admissions. Since 2006, the Queensland Diabetes Clinical Network has implemented programs aimed at reducing diabetes-related hospitalisation. The aim of this retrospective observational study was to determine the incidence of diabetes foot-related hospital admissions in Queensland from 2005 to 2010. Methods Data on all primary diabetes foot-related admissions in Queensland from 2005-2010 was obtained using diabetes foot-related ICD-10-AM (hospital discharge) codes. Queensland diabetes foot-related admission incidences were calculated using general population data from the Australian Bureau of Statistics. Furthermore, diabetes foot-related sub-group admissions were analysed. Chi-squared tests were used to assess changes in admissions over time. Results Overall, 24,917 diabetes foot-related admissions occurred, resulting in the use of 260,085 bed days or 1.4% of all available Queensland hospital bed days (18,352,152). The primary reasons for these admissions were foot ulcers (49.8%), cellulitis (20.7%), peripheral vascular disease (17.8%) and osteomyelitis (3.8%). The diabetes foot-related admission incidence among the general population (per 100,000) reduced by 22% (103.0 in 2005, to 80.7 in 2010, p < 0.001); bed days decreased by 18% (1,099 to 904, p < 0.001). Conclusion Diabetes foot complications appear to be the primary reason for 1.4 out of every 100 hospital beds used in Queensland. There has been a significant reduction in the incidence of diabetes foot-related admissions in Queensland between 2005 and 2010. This decrease has coincided with a corresponding decrease in amputations and the implementation of several diabetes foot clinical programs throughout Queensland.