2 resultados para CXCL8
em Queensland University of Technology - ePrints Archive
Resumo:
Secretion of proinflammatory cytokines by LPS activated endothelial cells contributes substantially to the pathogenesis of sepsis. However, the mechanism involved in this process is not well understood. In the present study, we determined the roles of GEF-H1 (Guanine-nucleotide exchange factor-H1)-RhoA signalling in LPS-induced interleukin-8 (IL-8, CXCL8) production in endothelial cells. First, we observed that GEF-H1 expression was upregulated in a dose- and time-dependent manner as consistent with TLR4 (Toll-like receptor 4) expression after LPS stimulation. Afterwards, Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activities, reduced LPS-induced NF-κB phosphorylation. Inhibition of GEF-H1 and RhoA expression reduced LPS-induced NF-κB and p38 phosphorylation. TLR4 knockout blocked LPS-induced activity of RhoA, however, MyD88 knockout did not impair the LPS-induced activity of RhoA. Nevertheless, TLR4 and MyD88 knockout both significantly inhibited transactivation of NF-κB. GEF-H1-RhoA and MyD88 both induced significant changes in NF-κB transactivation and IL-8 synthesis. Co-inhibition of GEF-H1-RhoA and p38 expression produced similar inhibitory effects on LPS-induced NF-κB transactivation and IL-8 synthesis as inhibition of p38 expression alone, thus confirming that activation of p38 was essential for the GEF-H1-RhoA signalling pathway to induce NF-κB transactivation and IL-8 synthesis. Taken together, these results demonstrate that LPS-induced NF-κB activation and IL-8 synthesis in endothelial cells are regulated by the MyD88 pathway and GEF-H1-RhoA pathway.
Resumo:
Background: Angiogenesis may play a role in the pathogenesis of Non-Small Cell Lung cancer (NSCLC). The CXC (ELR+) chemokine family are powerful promoters of the angiogenic response. Methods: The expression of the CXC (ELR+) family members (CXCL1-3/GROα-γ, CXCL8/IL-8, CXCR1/2) was examined in a series of resected fresh frozen NSCLC tumours. Additionally, the expression and epigenetic regulation of these chemokines was examined in normal bronchial epithelial and NSCLC cell lines. Results: Overall, expression of the chemokine ligands (CXCL1, 2, 8) and their receptors (CXCR1/2) were down regulated in tumour samples compared with normal, with the exception of CXCL3. CXCL8 and CXCR1/2 were found to be epigenetically regulated by histone post-translational modifications. Recombinant CXCL8 did not stimulate cell growth in either a normal bronchial epithelial or a squamous carcinoma cell line (SKMES-1). However, an increase was observed at 72 hours post treatment in an adenocarcinoma cell line. Conclusions: CXC (ELR+) chemokines are dysregulated in NSCLC. The balance of these chemokines may be critical in the tumour microenvironment and requires further elucidation. It remains to be seen if epigenetic targeting of these pathways is a viable therapeutic option in lung cancer treatment. © 2011 Baird et al.