240 resultados para COOPERATIVE OPTICAL TRANSITIONS
em Queensland University of Technology - ePrints Archive
Resumo:
An attempt was made to investigate the optical emission spectra of atomic, molecular, and ionic species in low-frequency, high-density ICP discharges in pure nitrogen, ar con gases, and gas mixtures Ar+H2, N2+Ar, and N2+H2. The excited species were identified by in situ optical emission intensity (OEI) measurements in the discharge chamber. In general, significant results were obtained.
Resumo:
The possibility of effective control of the wetting properties of a nanostructured surface consisting of arrays of amorphous carbon nanoparticles capped on carbon nanotubes using the electrowetting technique is demonstrated. By analyzing the electrowetting curves with an equivalent circuit model of the solid/liquid interface, the long-standing problem of control and monitoring of the transition between the "slippy" Cassie state and the "sticky" Wenzel states is resolved. The unique structural properties of the custom-designed nanocomposites with precisely tailored surface energy without using any commonly utilized low-surface-energy (e.g., polymer) conformal coatings enable easy identification of the occurrence of such transition from the optical contrast on the nanostructured surfaces. This approach to precise control of the wetting mode transitions is generic and has an outstanding potential to enable the stable superhydrophobic capability of nanostructured surfaces for numerous applications, such as low-friction microfluidics and self-cleaning.
Resumo:
Turning points for transitions between the electrostatic and electromagnetic discharge modes in low-frequency (∼ 500 kHz) inductively coupled plasmas have been identified and cross-referenced using time-resolved measurements of the plasma optical emission intensities, RF coil current, and ion saturation current collected by a single RF-compensated Langmuir probe. This enables one to monitor the variation of the plasma parameters, power transfer efficiency, which accompany the discharge hysteresis. The excitation conditions for the pure and hybrid modes in the plasma are considered, and the possibility of the TMmnl → TEm'n'l' transitions at higher frequencies are discussed.
Resumo:
Transitions between the two discharge modes in a low-frequency (∼460 kHz) inductively coupled plasma sustained by an internal oscillating radio frequency (rf) current sheet are studied. The unidirectional rf current sheet is generated by an internal antenna comprising two orthogonal sets of synphased rf currents driven in alternately reconnected copper litz wires. It is shown that in the low-to-intermediate pressure range the plasma source can be operated in the electrostatic (E) and electromagnetic (H) discharge modes. The brightness of the E -mode argon plasma glow is found remarkably higher than in inductively coupled plasmas with external flat spiral "pancake" coils. The cyclic variations of the input rf power result in pronounced hysteretic variations of the optical emission intensity and main circuit parameters of the plasma source. Under certain conditions, it appears possible to achieve a spontaneous E→H transition ("self-transition"). The observed phenomenon can be attributed to the thermal drift of the plasma parameters due to the overheating of the working gas. The discharge destabilizing factors due to the gas heating and step-wise ionization are also discussed. © 2005 American Vacuum Society.
Resumo:
Despite an increased risk of mental health problems in adolescents with Autism Spectrum Disorder (ASD), there is limited research on effective prevention approaches for this population. Funded by the Cooperative Research Centre for Living with Autism, a theoretically and empirically supported school-based preventative model has been developed to alter the negative trajectory and promote wellbeing and positive mental health in adolescents with ASD. This conceptual paper provides the rationale, theoretical, empirical and methodological framework of a multilayered intervention targeting the school, parents, and adolescents on the spectrum. Two important interrelated protective factors have been identified in community adolescent samples, namely the sense of belonging (connectedness) to school, and the capacity for self and affect regulation in the face of stress (i.e., resilience). We describe how a confluence of theories from social psychology, developmental psychology and family systems theory, along with empirical evidence (including emerging neurobiological evidence) supports the interrelationships between these protective factors and many indices of wellbeing. However, the characteristics of ASD (including social and communication difficulties, and frequently difficulties with changes and transitions, and diminished optimism and self-esteem) impair access to these vital protective factors. The paper describes how evidenced-based interventions at the school level for promoting inclusive schools (using the Index for Inclusion), and interventions for adolescents and parents to promote resilience and belonging (using the Resourceful Adolescent Program (RAP)), are adapted and integrated for adolescents with ASD. This multisite proof of concept study will confirm whether this multilevel school-based intervention is promising, feasible and sustainable.
Resumo:
Person tracking systems to date have either relied on motion detection or optical flow as a basis for person detection and tracking. As yet, systems have not been developed that utilise both these techniques. We propose a person tracking system that uses both, made possible by a novel hybrid optical flow-motion detection technique that we have developed. This provides the system with two methods of person detection, helping to avoid missed detections and the need to predict position, which can lead to errors in tracking and mistakes when handling occlusion situations. Our results show that our system is able to track people accurately, with an average error less than four pixels, and that our system outperforms the current CAVIAR benchmark system.