189 resultados para CONNECTIVE-TISSUE GRAFT

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose the progressive mechanical expansion of cell-derived tissue analogues as a novel, growth-based approach to in vitro tissue engineering. The prevailing approach to producing tissue in vitro is to culture cells in an exogenous “scaffold” that provides a basic structure and mechanical support. This necessarily pre-defines the final size of the implantable material, and specific signals must be provided to stimulate appropriate cell growth, differentiation and matrix formation. In contrast, surgical skin expansion, driven by increments of stretch, produces increasing quantities of tissue without trauma or inflammation. This suggests that connective tissue cells have the innate ability to produce growth in response to elevated tension. We posit that this capacity is maintained in vitro, and that order-of-magnitude growth may be similarly attained in self-assembling cultures of cells and their own extracellular matrix. The hypothesis that growth of connective tissue analogues can be induced by mechanical expansion in vitro may be divided into three components: (1) tension stimulates cell proliferation and extracellular matrix synthesis; (2) the corresponding volume increase will relax the tension imparted by a fixed displacement; (3) the repeated application of static stretch will produce sustained growth and a tissue structure adapted to the tensile loading. Connective tissues exist in a state of residual tension, which is actively maintained by resident cells such as fibroblasts. Studies in vitro and in vivo have demonstrated that cellular survival, reproduction, and matrix synthesis and degradation are regulated by the mechanical environment. Order-of-magnitude increases in both bone and skin volume have been achieved clinically through staged expansion protocols, demonstrating that tension-driven growth can be sustained over prolonged periods. Furthermore, cell-derived tissue analogues have demonstrated mechanically advantageous structural adaptation in response to applied loading. Together, these data suggest that a program of incremental stretch constitutes an appealing way to replicate tissue growth in cell culture, by harnessing the constituent cells’ innate mechanical responsiveness. In addition to offering a platform to study the growth and structural adaptation of connective tissues, tension-driven growth presents a novel approach to in vitro tissue engineering. Because the supporting structure is secreted and organised by the cells themselves, growth is not restricted by a “scaffold” of fixed size. This also minimises potential adverse reactions to exogenous materials upon implantation. Most importantly, we posit that the growth induced by progressive stretch will allow substantial volumes of connective tissue to be produced from relatively small initial cell numbers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The regulation of plasminogen activation is a key element in controlling proteolytic events in the extracellular matrix. Our previous studies had demonstrated that in inflamed gingival tissues, tissue-type plasminogen activator (t-PA) is significantly increased in the extracellular matrix of the connective tissue and that interleukin 1β (IL-1β) can up regulate the level of t-PA and plasminogen activator inhibitor-2 (PAI-2) synthesis by human gingival fibroblasts. Method: In the present study, the levels of t-PA and PAI-2 in gingival crevicular fluid (GCF) were measured from healthy, gingivitis and periodontitis sites and compared before and after periodontal treatment. Crevicular fluid from106 periodontal sites in 33 patients were collected. 24 sites from 11 periodontitis patients received periodontal treatment after the first sample collection and post-treatment samples were collected 14 days after treatment. All samples were analyzed by enzyme-linked immunosorbent assay (ELISA) for t-PA and PAI-2. Results: The results showed that significantly high levels of t-PA and PAI-2 in GCF were found in the gingivitis and periodontitis sites. Periodontal treatment led to significant decreases of PAI-2, but not t-PA, after 14 days. A significant positive linear correlation was found between t-PA and PAI-2 in GCF (r=0.80, p<0.01). In the healthy group, different sites from within the same subject showed little variation of t-PA and PAI-2 in GCF. However, the gingivitis and periodontitis sites showed large variation. These results suggest a good correlation between t-PA and PAI-2 with the severity of periodontal conditions. Conclusion: This study indicates that t-PA and PAI-2 may play a significant rôle in the periodontal tissue destruction and tissue remodeling and that t-PA and PAI-2 in GCF may be used as clinical markers to evaluate the periodontal diseases and assess treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitric oxide is known to be an important inflammatory mediator, and is implicated in the pathophysiology of a range of inflammatory disorders. The aim of this study was to determine the localization and distribution of endothelial NOS (NOS-II) in human gingival tissue, and to ascertain if human gingival fibroblasts express NOS-II when stimulated with interferon gamma (IFN-gamma) and bacterial lipopolysaccharide (LPS). The distribution of NOS-II in inflamed and non-inflamed specimens of human gingivae was studied using a monoclonal antibody against nitric oxide synthase II. Cultures of fibroblasts derived from healthy human gingivae were used for the cell culture experiments. The results from immunohistochemical staining of the tissues indicated an upregulation of NOS-II expression in inflamed compared to non-inflamed gingival tissue. Fibroblasts and inflammatory cells within the inflamed connective tissue were positively stained for NOS-II. In addition, basal keratinocytes also stained strongly for NOS-II, in both healthy and inflamed tissue sections. When cultured human gingival fibroblasts were stimulated by INF-gamma and Porphyromonas gingivalis LPS, NOS-II was more strongly expressed than when the cells were exposed to LPS or IFN-gamma alone. These data suggest that, as for other inflammatory diseases, NO plays a role in the pathophysiology of periodontitis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Both tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) are important proteolysis factors present in inflamed human periodontal tissues. The aim of the present study was to investigate the effect of lipopolysaccharide (LPS) on the synthesis of t-PA and PAI-2 by human gingival fibroblasts (HGF). LPS from different periodontal pathogens including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum were extracted by the hot phenol water method. The levels of t-PA and PAI-2 secreted into the cell culture media were measured by enzyme-linked immunosorbent assays (ELISA). The mRNA for t-PA and PAI-2 were measured by RT-PCR. The results showed t-PA synthesis was increased in response to all types of LPS studied and PAI-2 level was increased by LPS from A. actinomycetemcomitans and F. nucleatum, but not P. gingivalis. When comparing the effects of LPS from non-periodontal bacteria (Escherichia coli and Salmonella enteritidis) with the LPS from periodontal pathogens, we found that the ratio of t-PA to PAI-2 was greater following exposure of the cells to LPS from periodontal pathogens. The highest ratio of t-PA to PAI-2 was found in those cells exposed to LPS from P. gingivalis. These results indicate that LPS derived from periodontal pathogens may cause unbalanced regulation of plasminogen activator and plasminogen activator inhibitor by HGF and such an effect may, in part, contribute to the destruction of periodontal connective tissue through dysregulated pericellular proteolysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanocomposites are recently known to be among the most successful materials in biomedical applications. In this work we sought to fabricate fibrous scaffolds which can mimic the extra cellular matrix of cartilaginous connective tissue not only to a structural extent but with a mechanical and biological analogy. Poly(3-hydroxybutyrate) (P3HB) matrices were reinforced with 5, 10 and 15 %wt hydroxyapatite (HA) nanoparticles and electrospun into nanocomposite fibrous scaffolds. Mechanical properties of each case were compared with that of a P3HB scaffold produced in the same processing condition. Spectroscopic and morphological observations were used for detecting the interaction quality between the constituents. Nanoparticles rested deep within the fibers of 1 μm in diameter. Chemical interactions of hydrogen bonds linked the constituents through the interface. Maximum elastic modulus and mechanical strength was obtained with the presence of 5%wt hydroxyapatite nanoparticles. Above 10%wt, nanoparticles tended to agglomerate and caused the entity to lose its mechanical performance; however, viscoelasticity interfered at this concentration and lead to a delayed failure. In other words, higher elongation at break and a massive work of rupture was observed at 10%wt.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To investigate the expression pattern of hypoxia-induced proteins identified as being involved in malignant progression of head-and-neck squamous cell carcinoma (HNSCC) and to determine their relationship to tumor pO 2 and prognosis. Methods and Materials: We performed immunohistochemical staining of hypoxia-induced proteins (carbonic anhydrase IX [CA IX], BNIP3L, connective tissue growth factor, osteopontin, ephrin A1, hypoxia inducible gene-2, dihydrofolate reductase, galectin-1, IκB kinase β, and lysyl oxidase) on tumor tissue arrays of 101 HNSCC patients with pretreatment pO 2 measurements. Analysis of variance and Fisher's exact tests were used to evaluate the relationship between marker expression, tumor pO 2, and CA IX staining. Cox proportional hazard model and log-rank tests were used to determine the relationship between markers and prognosis. Results: Osteopontin expression correlated with tumor pO 2 (Eppendorf measurements) (p = 0.04). However, there was a strong correlation between lysyl oxidase, ephrin A1, and galectin-1 and CA IX staining. These markers also predicted for cancer-specific survival and overall survival on univariate analysis. A hypoxia score of 0-5 was assigned to each patient, on the basis of the presence of strong staining for these markers, whereby a higher score signifies increased marker expression. On multivariate analysis, increasing hypoxia score was an independent prognostic factor for cancer-specific survival (p = 0.015) and was borderline significant for overall survival (p = 0.057) when adjusted for other independent predictors of outcomes (hemoglobin and age). Conclusions: We identified a panel of hypoxia-related tissue markers that correlates with treatment outcomes in HNSCC. Validation of these markers will be needed to determine their utility in identifying patients for hypoxia-targeted therapy. © 2007 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Regenerative endodontics is an innovative treatment concept aiming to regenerate pulp, dentin and root structures. In the diseased or necrotic tooth, the limitation in vascular supply renders successful tissue regeneration/generation in a whole tooth challenging. The aim of this study is to evaluate the ability of vascularized tissue to develop within a pulpless tooth using tissue engineering techniques. Materials and methods A pulpless tooth chamber, filled with collagen I gel containing isolated rat dental pulp cells (DPC) and angiogenic growth factors, was placed into a hole created in the femoral cortex or into its own tooth socket, respectively. The gross, histological and biochemical characteristics of the de novo tissue were evaluated at 4 and 8weeks post-transplantation. Results Tooth revascularization and tissue generation was observed only in the femur group, confirming the important role of vascular supply in tissue regeneration. The addition of cells and growth factors significantly promoted connective tissue production in the tooth chamber. Conclusion Successful revascularization and tissue regeneration in this model demonstrate the importance of a direct vascular supply and the advantages of a stem cell approach. © 2012 John Wiley & Sons A/S.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammographic density (MD) adjusted for age and body mass index (BMI) is a strong heritable breast cancer risk factor; however, its biological basis remains elusive. Previous studies assessed MD-associated histology using random sampling approaches, despite evidence that high and low MD areas exist within a breast and are negatively correlated with respect to one another. We have used an image-guided approach to sample high and low MD tissues from within individual breasts to examine the relationship between histology and degree of MD. Image-guided sampling was performed using two different methodologies on mastectomy tissues (n = 12): (1) sampling of high and low MD regions within a slice guided by bright (high MD) and dark (low MD) areas in a slice X-ray film; (2) sampling of high and low MD regions within a whole breast using a stereotactically guided vacuum-assisted core biopsy technique. Pairwise analysis accounting for potential confounders (i.e. age, BMI, menopausal status, etc.) provides appropriate power for analysis despite the small sample size. High MD tissues had higher stromal (P = 0.002) and lower fat (P = 0.002) compositions, but no evidence of difference in glandular areas (P = 0.084) compared to low MD tissues from the same breast. High MD regions had higher relative gland counts (P = 0.023), and a preponderance of Type I lobules in high MD compared to low MD regions was observed in 58% of subjects (n = 7), but did not achieve significance. These findings clarify the histologic nature of high MD tissue and support hypotheses regarding the biophysical impact of dense connective tissue on mammary malignancy. They also provide important terms of reference for ongoing analyses of the underlying genetics of MD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An in vivo murine vascularized chamber model has been shown to generate spontaneous angiogenesis and new tissue formation. This experiment aimed to assess the effects of common biological scaffolds on tissue growth in this model. Either laminin-1, type I collagen, fibrin glue, hyaluronan, or sea sponge was inserted into silicone chambers containing the epigastric artery and vein, one end was sealed with adipose tissue and the other with bone wax, then incubated subcutaneously. After 2, 4, or 6 weeks, tissue from chambers containing collagen I, fibrin glue, hyaluronan, or no added scaffold (control) had small amounts of vascularized connective tissue. Chambers containing sea sponge had moderate connective tissue growth together with a mild "foreign body" inflammatory response. Chambers containing laminin-1, at a concentration 10-fold lower than its concentration in Matrigel™, resulted in a moderate adipogenic response. In summary, (1) biological hydrogels are resorbed and gradually replaced by vascularized connective tissue; (2) sponge-like matrices with large pores support connective tissue growth within the pores and become encapsulated with granulation tissue; (3) laminin-containing scaffolds facilitate adipogenesis. It is concluded that the nature and chemical composition of the scaffold exerts a significant influence on the amount and type of tissue generated in this in vivo chamber model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypoxia and the development and remodeling of blood vessels and connective tissue in granulation tissue that forms in a wound gap following full-thickness skin incision in the rat were examined as a function of time. A 1.5 cm-long incisional wound was created in rat groin skin and the opposed edges sutured together. Wounds were harvested between 3 days and 16 weeks and hypoxia, percent vascular volume, cell proliferation and apoptosis, α-smooth muscle actin, vascular endothelial growth factor-A, vascular endothelial growth factor receptor-2, and transforming growth factor-β 1 expression in granulation tissue were then assessed. Hypoxia was evident between 3 and 7 days while maximal cell proliferation at 3 days (123.6 ± 22.2 cells/mm 2, p < 0.001 when compared with normal skin) preceded the peak percent vascular volume that occurred at 7 days (15.83 ± 1.10%, p < 0.001 when compared with normal skin). The peak in cell apoptosis occurred at 3 weeks (12.1 ± 1.3 cells/mm 2, p < 0.001 when compared with normal skin). Intense α-smooth muscle actin labeling in myofibroblasts was evident at 7 and 10 days. Vascular endothelial growth factor receptor-2 and vascular endothelial growth factor-A were detectable until 2 and 3 weeks, respectively, while transforming growth factor-β 1 protein was detectable in endothelial cells and myofibroblasts until 3-4 weeks and in the extracellular matrix for 16 weeks. Incisional wound granulation tissue largely developed within 3-7 days in the presence of hypoxia. Remodeling, marked by a decline in the percent vascular volume and increased cellular apoptosis, occurred largely in the absence of detectable hypoxia. The expression of vascular endothelial growth factor-A, vascular endothelial growth factor receptor-2, and transforming growth factor-β 1 is evident prior, during, and after the peak of vascular volume reflecting multiple roles for these factors during wound healing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We initially described a rat chamber model with an inserted arteriovenous pedicle which spontaneously generates 3-dimensional vascularized connective tissue (Tanaka Y et al., Br J Plast Surg 2000; 53: 51-7). More recently we have developed a murine chamber model containing reconstituted basement membrane (Matrigel®) and FGF-2 that generates vascularized adipose tissue in vivo (Cronin K et al., Plast Reconstr Surg 2004; in press). We have extended this work to assess the cellular and matrix requirements for the Matrigel®- induced neo-adipogenesis. We found that chambers sealed to host fat were unable to grow new adipose tissue. In these chambers the Matrigel® became vascularized with maximal outgrowth of vessels extending to the periphery at 6 weeks. A small amount of adipose tissue was found adjacent to the vessels, most likely arising from periadventitial adipose tissue. In contrast, chambers open to interaction with endogenous adipose tissue showed abundant new fat, and partial exposure to adjacent adipose tissue clearly showed neo-adipogenesis only in this area. Addition of small amounts of free fat to the closed chamber containing Matrigel® was able to induce neo-adipogenesis. Addition of small pieces of human fat also caused neo-adipogenesis in immunocompromised (SCID) mice. Also, we found Matrigel® to induce adipogenesis of Lac-Z-tagged (Rosa-26) murine bone marrow-derived mesenchymal stem cells, and cells similar to these have been isolated from human adipose tissue. Given that Matrigel® is a mouse product and cannot be used in humans, we have started investigating alternative matrix scaffolds for adipogenesis such as the PDA-approved PLGA, collagen and purified components derived from Matrigel®, such as laminin-1. The optimal conditions for adipogenesis with these matrices are still being elucidated. In conclusion, we have demonstrated that a precursor cell source inside the chamber is essential for the generation of vascularized adipose tissue in vivo. This technique offers unique potential for the reconstruction of soft tissue defects and may enable the generation of site-specific tissue using the correct microenvironment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During wound repair, the balance between matrix metalloproteinases (MMPs) and their natural inhibitors (the TIMPs) is crucial for the normal extra cellular matrix turnover. However, the over expression of several MMPs including MMP-1, 2, 3, 8, 9 and MMP-10, combined with abnormally high levels of activation or low expression of TIMPs, may contribute to excessive degradation of connective tissue and formation of chronic ulcers. There are many groups exploring strategies for promoting wound healing involving delivery of growth factors, cells, ECM components and small molecules. Our approach for improving the balance of MMPs is not to add anything more to the wound, but instead to neutralise the over-expressed MMPs using inhibitors tethered to a bandage-like hydrogel. Our in vitro experiments using designed synthetic pseudo peptide inhibitors have been demonstrated to inhibit MMP activity in standard solutions. These inhibitors have also been tethered to polyethylene glycol hydrogels using a facile reaction between the linker unit on the inhibitor and the gel. After tethering the inhibition of MMPs diminishes to some extent and we postulate that this arises due to poor diffusion of the MMPs into the gels. When the tethered inhibitors were tested against chronic wound fluid obtained against patients we observed over 40% inhibition in proteolytic activity suggesting our approach may prove useful in rebalancing MMPs within chronic wounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Successful wound repair and normal turnover of the extracellular matrix relies on a balance between matrix metalloproteinases (MMPs) and their natural inhibitors (the TIMPs). When over-expression of MMPs and abnormally high levels of activation or low expression of TIMPs are encountered, excessive degradation of connective tissue and the formation of chronic ulcers can occur. One strategy to rebalance MMPs and TIMPs is to use inhibitors. We have designed a synthetic pseudopeptide inhibitor with an amine linker group based on a known high-affinity peptidomimetic MMP inhibitor have demonstrated inhibition of MMP-1, -2, -3 and -9 activity in standard solutions. The inhibitor was also tethered to a polyethylene glycol hydrogel using a facile reaction between the linker unit on the inhibitor and the hydrogel precursors. After tethering, we observed inhibition of the MMPs although there was an increase in the IC50s which was attributed to poor diffusion of the MMPs into the hydrogels, reduced activity of the tethered inhibitor or incomplete incorporation of the inhibitor into the hydrogels. When the tethered inhibitors were tested against chronic wound fluid we observed significant inhibition in proteolytic activity suggesting our approach may prove useful in rebalancing MMPs within chronic wounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extracellular matrix regulates many cellular processes likely to be important for development and regression of corpora lutea. Therefore, we identified the types and components of the extracellular matrix of the human corpus luteum at different stages of the menstrual cycle. Two different types of extracellular matrix were identified by electron microscopy; subendothelial basal laminas and an interstitial matrix located as aggregates at irregular intervals between the non-vascular cells. No basal laminas were associated with luteal cells. At all stages, collagen type IV α1 and laminins α5, β2 and γ1 were localized by immunohistochemistry to subendothelial basal laminas, and collagen type IV α1 and laminins α2, α5, β1 and β2 localized in the interstitial matrix. Laminin α4 and β1 chains occurred in the subendothelial basal lamina from mid-luteal stage to regression; at earlier stages, a punctate pattern of staining was observed. Therefore, human luteal subendothelial basal laminas potentially contain laminin 11 during early luteal development and, additionally, laminins 8, 9 and 10 at the mid-luteal phase. Laminin α1 and α3 chains were not detected in corpora lutea. Versican localized to the connective tissue extremities of the corpus luteum. Thus, during the formation of the human corpus luteum, remodelling of extracellular matrix does not result in basal laminas as present in the adrenal cortex or ovarian follicle. Instead, novel aggregates of interstitial matrix of collagen and laminin are deposited within the luteal parenchyma, and it remains to be seen whether this matrix is important for maintaining the luteal cell phenotype.