467 resultados para CENTERBAND-ONLY DETECTION

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network-based Intrusion Detection Systems (NIDSs) analyse network traffic to detect instances of malicious activity. Typically, this is only possible when the network traffic is accessible for analysis. With the growing use of Virtual Private Networks (VPNs) that encrypt network traffic, the NIDS can no longer access this crucial audit data. In this paper, we present an implementation and evaluation of our approach proposed in Goh et al. (2009). It is based on Shamir's secret-sharing scheme and allows a NIDS to function normally in a VPN without any modifications and without compromising the confidentiality afforded by the VPN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The automatic extraction of road features from remote sensed images has been a topic of great interest within the photogrammetric and remote sensing communities for over 3 decades. Although various techniques have been reported in the literature, it is still challenging to efficiently extract the road details with the increasing of image resolution as well as the requirement for accurate and up-to-date road data. In this paper, we will focus on the automatic detection of road lane markings, which are crucial for many applications, including lane level navigation and lane departure warning. The approach consists of four steps: i) data preprocessing, ii) image segmentation and road surface detection, iii) road lane marking extraction based on the generated road surface, and iv) testing and system evaluation. The proposed approach utilized the unsupervised ISODATA image segmentation algorithm, which segments the image into vegetation regions, and road surface based only on the Cb component of YCbCr color space. A shadow detection method based on YCbCr color space is also employed to detect and recover the shadows from the road surface casted by the vehicles and trees. Finally, the lane marking features are detected from the road surface using the histogram clustering. The experiments of applying the proposed method to the aerial imagery dataset of Gympie, Queensland demonstrate the efficiency of the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustically, vehicles are extremely noisy environments and as a consequence audio-only in-car voice recognition systems perform very poorly. Seeing that the visual modality is immune to acoustic noise, using the visual lip information from the driver is seen as a viable strategy in circumventing this problem. However, implementing such an approach requires a system being able to accurately locate and track the driver’s face and facial features in real-time. In this paper we present such an approach using the Viola-Jones algorithm. Using this system, we present our results which show that using the Viola-Jones approach is a suitable method of locating and tracking the driver’s lips despite the visual variability of illumination and head pose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Object tracking systems require accurate segmentation of the objects from the background for effective tracking. Motion segmentation or optical flow can be used to segment incoming images. Whilst optical flow allows multiple moving targets to be separated based on their individual velocities, optical flow techniques are prone to errors caused by changing lighting and occlusions, both common in a surveillance environment. Motion segmentation techniques are more robust to fluctuating lighting and occlusions, but don't provide information on the direction of the motion. In this paper we propose a combined motion segmentation/optical flow algorithm for use in object tracking. The proposed algorithm uses the motion segmentation results to inform the optical flow calculations and ensure that optical flow is only calculated in regions of motion, and improve the performance of the optical flow around the edge of moving objects. Optical flow is calculated at pixel resolution and tracking of flow vectors is employed to improve performance and detect discontinuities, which can indicate the location of overlaps between objects. The algorithm is evaluated by attempting to extract a moving target within the flow images, given expected horizontal and vertical movement (i.e. the algorithms intended use for object tracking). Results show that the proposed algorithm outperforms other widely used optical flow techniques for this surveillance application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustically, car cabins are extremely noisy and as a consequence audio-only, in-car voice recognition systems perform poorly. As the visual modality is immune to acoustic noise, using the visual lip information from the driver is seen as a viable strategy in circumventing this problem by using audio visual automatic speech recognition (AVASR). However, implementing AVASR requires a system being able to accurately locate and track the drivers face and lip area in real-time. In this paper we present such an approach using the Viola-Jones algorithm. Using the AVICAR [1] in-car database, we show that the Viola- Jones approach is a suitable method of locating and tracking the driver’s lips despite the visual variability of illumination and head pose for audio-visual speech recognition system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approaches with Vertical Guidance (APV) can provide greater safety and cost savings to general aviation through accurate GPS horizontal and vertical navigation. However, GPS needs augmentation to achieve APV fault detection requirements. Aircraft Based Augmentation Systems (ABAS) fuse GPS with additional sensors at the aircraft. Typical ABAS designs assume high-quality inertial sensors with Kalman filters but these are too expensive for general aviation. Instead of using high-quality (and expensive) sensors, the purpose of this paper is to investigate augmenting GPS with a low-quality MEMS IMU and Aircraft Dynamic Model (ADM). The IMU and ADM are fused together using a multiple model fusion strategy in a bank of Extended Kalman Filters (EKF) with the Normalized Solution Separation (NSS) fault detection scheme. A tightly-coupled configuration with GPS is used and frequent GPS updates are applied to the IMU and ADM to compensate for their errors. Based upon a simulated APV approach, the performance of this architecture in detecting a GPS ramp fault is investigated showing a performance improvement over a GPS-only “snapshot” implementation of the NSS method. The effect of fusing the IMU with the ADM is evaluated by comparing a GPS-IMU-ADM EKF with a GPS-IMU EKF where a small improvement in protection levels is shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection of voice activity is a challenging problem, especially when the level of acoustic noise is high. Most current approaches only utilise the audio signal, making them susceptible to acoustic noise. An obvious approach to overcome this is to use the visual modality. The current state-of-the-art visual feature extraction technique is one that uses a cascade of visual features (i.e. 2D-DCT, feature mean normalisation, interstep LDA). In this paper, we investigate the effectiveness of this technique for the task of visual voice activity detection (VAD), and analyse each stage of the cascade and quantify the relative improvement in performance gained by each successive stage. The experiments were conducted on the CUAVE database and our results highlight that the dynamics of the visual modality can be used to good effect to improve visual voice activity detection performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ad hoc networks are vulnerable to attacks due to distributed nature and lack of infrastructure. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. The clustering protocols can be taken as an additional advantage in these processing constrained networks to collaboratively detect intrusions with less power usage and minimal overhead. Existing clustering protocols are not suitable for intrusion detection purposes, because they are linked with the routes. The route establishment and route renewal affects the clusters and as a consequence, the processing and traffic overhead increases due to instability of clusters. The ad hoc networks are battery and power constraint, and therefore a trusted monitoring node should be available to detect and respond against intrusions in time. This can be achieved only if the clusters are stable for a long period of time. If the clusters are regularly changed due to routes, the intrusion detection will not prove to be effective. Therefore, a generalized clustering algorithm has been proposed that can run on top of any routing protocol and can monitor the intrusions constantly irrespective of the routes. The proposed simplified clustering scheme has been used to detect intrusions, resulting in high detection rates and low processing and memory overhead irrespective of the routes, connections, traffic types and mobility of nodes in the network. Clustering is also useful to detect intrusions collaboratively since an individual node can neither detect the malicious node alone nor it can take action against that node on its own.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Denial of Services DDoS, attacks has become one of the biggest threats for resources over Internet. Purpose of these attacks is to make servers deny from providing services to legitimate users. These attacks are also used for occupying media bandwidth. Currently intrusion detection systems can just detect the attacks but cannot prevent / track the location of intruders. Some schemes also prevent the attacks by simply discarding attack packets, which saves victim from attack, but still network bandwidth is wasted. In our opinion, DDoS requires a distributed solution to save wastage of resources. The paper, presents a system that helps us not only in detecting such attacks but also helps in tracing and blocking (to save the bandwidth as well) the multiple intruders using Intelligent Software Agents. The system gives dynamic response and can be integrated with the existing network defense systems without disturbing existing Internet model. We have implemented an agent based networking monitoring system in this regard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the host-specificity and -sensitivity of human- and bovine-specific adenoviruses (HS-AVs and BS-AVs) were evaluated by testing wastewater/fecal samples from various animal species in Southeast, Queensland, Australia. The overall specificity and sensitivity of the HS-AVs marker were 1.0 and 0.78, respectively. These figures for the BS-AVs were 1.0 and 0.73, respectively. Twenty environmental water samples were colleted during wet conditions and 20 samples were colleted during dry conditions from the Maroochy Coastal River and tested for the presence of fecal indicator bacteria (FIB), host-specific viral markers, zoonotic bacterial and protozoan pathogens using PCR/qPCR. The concentrations of FIB in water samples collected after wet conditions were generally higher compared to dry conditions. HS-AVs was detected in 20% water samples colleted during wet conditions and whereas BS-AVs was detected in both wet (i.e., 10%) and dry (i.e., 10%) conditions. Both, C. jejuni mapA and Salmonella invA genes were detected in 10% and 10% of samples, respectively collected during dry conditions. The concentrations of Salmonella invA ranged between 3.5 × 102 to 4.3 × 102 genomic copies per 500 ml of water G. lamblia β-giardin gene was detected only in one sample (5%) collected during the dry conditions. Weak or significant correlations were observed between FIB with viral markers and zoonotic pathogens. However, during dry conditions, no significant correlations were observed between FIB concentrations with viral markers and zoonotic pathogens. The prevalence of HS-AVs in samples collected from the study river suggests that the quality of water is affected by human fecal pollution and as well as bovine fecal pollution. The results suggest that HS-AVs and BS-AVs detection using PCR could be a useful tool for the identification of human sourced fecal pollution in coastal waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rupestris stem pitting (rSP), a graft-transmissible grapevine disease, can be identified only by its reaction (pitted wood) on inoculated Vitis rupestris ‘St. George.’ DsRNA was extracted from grapevines from California and Canada that indexed positive for rSP on St. George. Two distinct dsRNA species (B and C) (Mr = 5.3 × 106 and 4.4 × 106, respectively) were detected from the stem tissue of rSP-positive samples. Although similar dsRNA species (B and C) were detected in extracts of grapevines from New York, the association of dsRNA B and C with rSP in New York samples was not consistent. Also, eight different dsRNAs, known to be associated with the powdery mildew fungus, Uncinula necator, were detected in leaves of New York samples. In New York, the dsRNAs were not observed in leaves or stem samples collected from June through late August during the 1988 and 1989 growing seasons, suggesting that dsRNA detection in the grape tissue is variable throughout the season. We suggest that dsRNA species B and C are associated with rSP disease. The inconsistent results with New York samples are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Video surveillance technology, based on Closed Circuit Television (CCTV) cameras, is one of the fastest growing markets in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. To overcome this limitation, it is necessary to have “intelligent” processes which are able to highlight the salient data and filter out normal conditions that do not pose a threat to security. In order to create such intelligent systems, an understanding of human behaviour, specifically, suspicious behaviour is required. One of the challenges in achieving this is that human behaviour can only be understood correctly in the context in which it appears. Although context has been exploited in the general computer vision domain, it has not been widely used in the automatic suspicious behaviour detection domain. So, it is essential that context has to be formulated, stored and used by the system in order to understand human behaviour. Finally, since surveillance systems could be modeled as largescale data stream systems, it is difficult to have a complete knowledge base. In this case, the systems need to not only continuously update their knowledge but also be able to retrieve the extracted information which is related to the given context. To address these issues, a context-based approach for detecting suspicious behaviour is proposed. In this approach, contextual information is exploited in order to make a better detection. The proposed approach utilises a data stream clustering algorithm in order to discover the behaviour classes and their frequency of occurrences from the incoming behaviour instances. Contextual information is then used in addition to the above information to detect suspicious behaviour. The proposed approach is able to detect observed, unobserved and contextual suspicious behaviour. Two case studies using video feeds taken from CAVIAR dataset and Z-block building, Queensland University of Technology are presented in order to test the proposed approach. From these experiments, it is shown that by using information about context, the proposed system is able to make a more accurate detection, especially those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information give critical feedback to the system designers to refine the system. Finally, the proposed modified Clustream algorithm enables the system to both continuously update the system’s knowledge and to effectively retrieve the information learned in a given context. The outcomes from this research are: (a) A context-based framework for automatic detecting suspicious behaviour which can be used by an intelligent video surveillance in making decisions; (b) A modified Clustream data stream clustering algorithm which continuously updates the system knowledge and is able to retrieve contextually related information effectively; and (c) An update-describe approach which extends the capability of the existing human local motion features called interest points based features to the data stream environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network-based Intrusion Detection Systems (NIDSs) monitor network traffic for signs of malicious activities that have the potential to disrupt entire network infrastructures and services. NIDS can only operate when the network traffic is available and can be extracted for analysis. However, with the growing use of encrypted networks such as Virtual Private Networks (VPNs) that encrypt and conceal network traffic, a traditional NIDS can no longer access network traffic for analysis. The goal of this research is to address this problem by proposing a detection framework that allows a commercial off-the-shelf NIDS to function normally in a VPN without any modification. One of the features of the proposed framework is that it does not compromise on the confidentiality afforded by the VPN. Our work uses a combination of Shamir’s secret-sharing scheme and randomised network proxies to securely route network traffic to the NIDS for analysis. The detection framework is effective against two general classes of attacks – attacks targeted at the network hosts or attacks targeted at framework itself. We implement the detection framework as a prototype program and evaluate it. Our evaluation shows that the framework does indeed detect these classes of attacks and does not introduce any additional false positives. Despite the increase in network overhead in doing so, the proposed detection framework is able to consistently detect intrusions through encrypted networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unusual event detection in crowded scenes remains challenging because of the diversity of events and noise. In this paper, we present a novel approach for unusual event detection via sparse reconstruction of dynamic textures over an overcomplete basis set, with the dynamic texture described by local binary patterns from three orthogonal planes (LBPTOP). The overcomplete basis set is learnt from the training data where only the normal items observed. In the detection process, given a new observation, we compute the sparse coefficients using the Dantzig Selector algorithm which was proposed in the literature of compressed sensing. Then the reconstruction errors are computed, based on which we detect the abnormal items. Our application can be used to detect both local and global abnormal events. We evaluate our algorithm on UCSD Abnormality Datasets for local anomaly detection, which is shown to outperform current state-of-the-art approaches, and we also get promising results for rapid escape detection using the PETS2009 dataset.