328 resultados para CARA utility function
em Queensland University of Technology - ePrints Archive
Resumo:
The total entropy utility function is considered for the dual purpose of Bayesian design for model discrimination and parameter estimation. A sequential design setting is proposed where it is shown how to efficiently estimate the total entropy utility for a wide variety of data types. Utility estimation relies on forming particle approximations to a number of intractable integrals which is afforded by the use of the sequential Monte Carlo algorithm for Bayesian inference. A number of motivating examples are considered for demonstrating the performance of total entropy in comparison to utilities for model discrimination and parameter estimation. The results suggest that the total entropy utility selects designs which are efficient under both experimental goals with little compromise in achieving either goal. As such, the total entropy utility is advocated as a general utility for Bayesian design in the presence of model uncertainty.
Relative income, happiness, and utility : an explanation for the Easterlin paradox and other puzzles
Resumo:
The well-known Easterlin paradox points out that average happiness has remained constant over time despite sharp rises in GNP per head. At the same time, a micro literature has typically found positive correlations between individual income and individual measures of subjective well-being. This paper suggests that these two findings are consistent with the presence of relative income terms in the utility function. Income may be evaluated relative to others (social comparison) or to oneself in the past (habituation). We review the evidence on relative income from the subjective well-being literature. We also discuss the relation (or not) between happiness and utility, and discuss some nonhappiness research (behavioral, experimental, neurological) related to income comparisons. We last consider how relative income in the utility function can affect economic models of behavior in the domains of consumption, investment, economic growth, savings, taxation, labor supply, wages, and migration.
Resumo:
Classical negotiation models are weak in supporting real-world business negotiations because these models often assume that the preference information of each negotiator is made public. Although parametric learning methods have been proposed for acquiring the preference information of negotiation opponents, these methods suffer from the strong assumptions about the specific utility function and negotiation mechanism employed by the opponents. Consequently, it is difficult to apply these learning methods to the heterogeneous negotiation agents participating in e‑marketplaces. This paper illustrates the design, development, and evaluation of a nonparametric negotiation knowledge discovery method which is underpinned by the well-known Bayesian learning paradigm. According to our empirical testing, the novel knowledge discovery method can speed up the negotiation processes while maintaining negotiation effectiveness. To the best of our knowledge, this is the first nonparametric negotiation knowledge discovery method developed and evaluated in the context of multi-issue bargaining over e‑marketplaces.
Resumo:
In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations. Our focus is on stochastic models and, in particular, we investigate the methodology for Markov process models of epidemics and macroparasite population evolution. The macroparasite example involves a multivariate process and we assess the loss of information from not observing all variables.
Resumo:
Despite its potential multiple contributions to sustainable policy objectives, urban transit is generally not widely used by the public in terms of its market share compared to that of automobiles, particularly in affluent societies with low-density urban forms like Australia. Transit service providers need to attract more people to transit by improving transit quality of service. The key to cost-effective transit service improvements lies in accurate evaluation of policy proposals by taking into account their impacts on transit users. If transit providers knew what is more or less important to their customers, they could focus their efforts on optimising customer-oriented service. Policy interventions could also be specified to influence transit users’ travel decisions, with targets of customer satisfaction and broader community welfare. This significance motivates the research into the relationship between urban transit quality of service and its user perception as well as behaviour. This research focused on two dimensions of transit user’s travel behaviour: route choice and access arrival time choice. The study area chosen was a busy urban transit corridor linking Brisbane central business district (CBD) and the St. Lucia campus of The University of Queensland (UQ). This multi-system corridor provided a ‘natural experiment’ for transit users between the CBD and UQ, as they can choose between busway 109 (with grade-separate exclusive right-of-way), ordinary on-street bus 412, and linear fast ferry CityCat on the Brisbane River. The population of interest was set as the attendees to UQ, who travelled from the CBD or from a suburb via the CBD. Two waves of internet-based self-completion questionnaire surveys were conducted to collect data on sampled passengers’ perception of transit service quality and behaviour of using public transit in the study area. The first wave survey is to collect behaviour and attitude data on respondents’ daily transit usage and their direct rating of importance on factors of route-level transit quality of service. A series of statistical analyses is conducted to examine the relationships between transit users’ travel and personal characteristics and their transit usage characteristics. A factor-cluster segmentation procedure is applied to respodents’ importance ratings on service quality variables regarding transit route preference to explore users’ various perspectives to transit quality of service. Based on the perceptions of service quality collected from the second wave survey, a series of quality criteria of the transit routes under study was quantitatively measured, particularly, the travel time reliability in terms of schedule adherence. It was proved that mixed traffic conditions and peak-period effects can affect transit service reliability. Multinomial logit models of transit user’s route choice were estimated using route-level service quality perceptions collected in the second wave survey. Relative importance of service quality factors were derived from choice model’s significant parameter estimates, such as access and egress times, seat availability, and busway system. Interpretations of the parameter estimates were conducted, particularly the equivalent in-vehicle time of access and egress times, and busway in-vehicle time. Market segmentation by trip origin was applied to investigate the difference in magnitude between the parameter estimates of access and egress times. The significant costs of transfer in transit trips were highlighted. These importance ratios were applied back to quality perceptions collected as RP data to compare the satisfaction levels between the service attributes and to generate an action relevance matrix to prioritise attributes for quality improvement. An empirical study on the relationship between average passenger waiting time and transit service characteristics was performed using the service quality perceived. Passenger arrivals for services with long headways (over 15 minutes) were found to be obviously coordinated with scheduled departure times of transit vehicles in order to reduce waiting time. This drove further investigations and modelling innovations in passenger’ access arrival time choice and its relationships with transit service characteristics and average passenger waiting time. Specifically, original contributions were made in formulation of expected waiting time, analysis of the risk-aversion attitude to missing desired service run in the passengers’ access time arrivals’ choice, and extensions of the utility function specification for modelling passenger access arrival distribution, by using complicated expected utility forms and non-linear probability weighting to explicitly accommodate the risk of missing an intended service and passenger’s risk-aversion attitude. Discussions on this research’s contributions to knowledge, its limitations, and recommendations for future research are provided at the concluding section of this thesis.
Resumo:
Utility functions in Bayesian experimental design are usually based on the posterior distribution. When the posterior is found by simulation, it must be sampled from for each future data set drawn from the prior predictive distribution. Many thousands of posterior distributions are often required. A popular technique in the Bayesian experimental design literature to rapidly obtain samples from the posterior is importance sampling, using the prior as the importance distribution. However, importance sampling will tend to break down if there is a reasonable number of experimental observations and/or the model parameter is high dimensional. In this paper we explore the use of Laplace approximations in the design setting to overcome this drawback. Furthermore, we consider using the Laplace approximation to form the importance distribution to obtain a more efficient importance distribution than the prior. The methodology is motivated by a pharmacokinetic study which investigates the effect of extracorporeal membrane oxygenation on the pharmacokinetics of antibiotics in sheep. The design problem is to find 10 near optimal plasma sampling times which produce precise estimates of pharmacokinetic model parameters/measures of interest. We consider several different utility functions of interest in these studies, which involve the posterior distribution of parameter functions.
Resumo:
Several studies published in the last few decades have demonstrated a low price-elasticity for residential water use. In particular, it has been shown that there is a quantity of water demanded that remains constant regardless of prices and other economic factors. In this research, we characterise residential water demand based on a Stone-Geary utility function. This specification is not only theory-compatible but can also explicitly model a minimum level of consumption not dependent on prices or income. This is described as minimum threshold or nondiscretionary water use. Additionally, the Stone-Geary framework is used to model the subsistence level of water consumption that is dependent on the temporal evolution of consumer habits and stock of physical capital. The main aim of this study is to analyse the impact of water-saving habits and water-efficient technologies on residential water demand, while additionally focusing attention on nondiscretionary uses. This is informed by an empirical application using data from a survey conducted among residents of Brisbane City Council, Australia. The results will be especially useful in the design of water tariffs and other water-saving policies.
Resumo:
Monitoring stream networks through time provides important ecological information. The sampling design problem is to choose locations where measurements are taken so as to maximise information gathered about physicochemical and biological variables on the stream network. This paper uses a pseudo-Bayesian approach, averaging a utility function over a prior distribution, in finding a design which maximizes the average utility. We use models for correlations of observations on the stream network that are based on stream network distances and described by moving average error models. Utility functions used reflect the needs of the experimenter, such as prediction of location values or estimation of parameters. We propose an algorithmic approach to design with the mean utility of a design estimated using Monte Carlo techniques and an exchange algorithm to search for optimal sampling designs. In particular we focus on the problem of finding an optimal design from a set of fixed designs and finding an optimal subset of a given set of sampling locations. As there are many different variables to measure, such as chemical, physical and biological measurements at each location, designs are derived from models based on different types of response variables: continuous, counts and proportions. We apply the methodology to a synthetic example and the Lake Eacham stream network on the Atherton Tablelands in Queensland, Australia. We show that the optimal designs depend very much on the choice of utility function, varying from space filling to clustered designs and mixtures of these, but given the utility function, designs are relatively robust to the type of response variable.
Resumo:
This paper discusses a method to quantify robust autonomy of Uninhabited Vehicles and Systems (UVS) in aerospace, marine, or land applications. Based on mission-vehicle specific performance criteria, we define an system utility function that can be evaluated using simulation scenarios for an envelope of environmental conditions. The results of these evaluations are used to compute a figure of merit or measure for operational efectiveness (MOE). The procedure is then augmented to consider faults and the performance of mechanisms to handle these faulty operational modes. This leads to a measure of robust autonomy (MRA). The objective of the proposed figures of merit is to assist in decision making about vehicle performance and reliability at both vehicle development stage (using simulation models) and at certification stage (using hardware-in-the-loop testing). Performance indices based on dynamic and geometric tasks associated with vehicle manoeuvring problems are proposed, and an example of a two- dimensional y scenario is provided to illustrate the use of the proposed figures of merit.
Resumo:
Bayesian experimental design is a fast growing area of research with many real-world applications. As computational power has increased over the years, so has the development of simulation-based design methods, which involve a number of algorithms, such as Markov chain Monte Carlo, sequential Monte Carlo and approximate Bayes methods, facilitating more complex design problems to be solved. The Bayesian framework provides a unified approach for incorporating prior information and/or uncertainties regarding the statistical model with a utility function which describes the experimental aims. In this paper, we provide a general overview on the concepts involved in Bayesian experimental design, and focus on describing some of the more commonly used Bayesian utility functions and methods for their estimation, as well as a number of algorithms that are used to search over the design space to find the Bayesian optimal design. We also discuss other computational strategies for further research in Bayesian optimal design.
Resumo:
This thesis progresses Bayesian experimental design by developing novel methodologies and extensions to existing algorithms. Through these advancements, this thesis provides solutions to several important and complex experimental design problems, many of which have applications in biology and medicine. This thesis consists of a series of published and submitted papers. In the first paper, we provide a comprehensive literature review on Bayesian design. In the second paper, we discuss methods which may be used to solve design problems in which one is interested in finding a large number of (near) optimal design points. The third paper presents methods for finding fully Bayesian experimental designs for nonlinear mixed effects models, and the fourth paper investigates methods to rapidly approximate the posterior distribution for use in Bayesian utility functions.
Resumo:
A flexible and simple Bayesian decision-theoretic design for dose-finding trials is proposed in this paper. In order to reduce the computational burden, we adopt a working model with conjugate priors, which is flexible to fit all monotonic dose-toxicity curves and produces analytic posterior distributions. We also discuss how to use a proper utility function to reflect the interest of the trial. Patients are allocated based on not only the utility function but also the chosen dose selection rule. The most popular dose selection rule is the one-step-look-ahead (OSLA), which selects the best-so-far dose. A more complicated rule, such as the two-step-look-ahead, is theoretically more efficient than the OSLA only when the required distributional assumptions are met, which is, however, often not the case in practice. We carried out extensive simulation studies to evaluate these two dose selection rules and found that OSLA was often more efficient than two-step-look-ahead under the proposed Bayesian structure. Moreover, our simulation results show that the proposed Bayesian method's performance is superior to several popular Bayesian methods and that the negative impact of prior misspecification can be managed in the design stage.
Resumo:
This paper studies the problem of selecting users in an online social network for targeted advertising so as to maximize the adoption of a given product. In previous work, two families of models have been considered to address this problem: direct targeting and network-based targeting. The former approach targets users with the highest propensity to adopt the product, while the latter approach targets users with the highest influence potential – that is users whose adoption is most likely to be followed by subsequent adoptions by peers. This paper proposes a hybrid approach that combines a notion of propensity and a notion of influence into a single utility function. We show that targeting a fixed number of high-utility users results in more adoptions than targeting either highly influential users or users with high propensity.
Resumo:
Background The increasing popularity and use of the internet makes it an attractive option for providing health information and treatment, including alcohol/other drug use. There is limited research examining how people identify and access information about alcohol or other drug (AOD) use online, or how they assess the usefulness of the information presented. This study examined the strategies that individuals used to identify and navigate a range of AOD websites, along with the attitudes concerning presentation and content. Methods Members of the general community in Brisbane and Roma (Queensland, Australia) were invited to participate in a 30-minute search of the internet for sites related to AOD use, followed by a focus group discussion. Fifty one subjects participated in the study across nine focus groups. Results Participants spent a maximum of 6.5 minutes on any one website, and less if the user was under 25 years of age. Time spent was as little as 2 minutes if the website was not the first accessed. Participants recommended that AOD-related websites should have an engaging home or index page, which quickly and accurately portrayed the site’s objectives, and provided clear site navigation options. Website content should clearly match the title and description of the site that is used by internet search engines. Participants supported the development of a portal for AOD websites, suggesting that it would greatly facilitate access and navigation. Treatment programs delivered online were initially viewed with caution. This appeared to be due to limited understanding of what constituted online treatment, including its potential efficacy. Conclusions A range of recommendations arise from this study regarding the design and development of websites, particularly those related to AOD use. These include prudent use of text and information on any one webpage, the use of graphics and colours, and clear, uncluttered navigation options. Implications for future website development are discussed.