18 resultados para CALCULATED OSCILLATOR-STRENGTHS
em Queensland University of Technology - ePrints Archive
Resumo:
We investigate known security flaws in the context of security ceremonies to gain an understanding of the ceremony analysis process. The term security ceremonies is used to describe a system of protocols and humans which interact for a specific purpose. Security ceremonies and ceremony analysis is an area of research in its infancy, and we explore the basic principles involved to better understand the issues involved.We analyse three ceremonies, HTTPS, EMV and Opera Mini, and use the information gained from the experience to establish a list of typical flaws in ceremonies. Finally, we use that list to analyse a protocol proven secure for human use. This leads to a realisation of the strengths and weaknesses of ceremony analysis.
Resumo:
Higher-order spectral (bispectral and trispectral) analyses of numerical solutions of the Duffing equation with a cubic stiffness are used to isolate the coupling between the triads and quartets, respectively, of nonlinearly interacting Fourier components of the system. The Duffing oscillator follows a period-doubling intermittency catastrophic route to chaos. For period-doubled limit cycles, higher-order spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. However, when the Duffing oscillator becomes chaotic, global behavior of the cubic nonlinearity becomes dominant and quadratic nonlinear interactions are weak, while cubic interactions remain strong. As the nonlinearity of the system is increased, the number of excited Fourier components increases, eventually leading to broad-band power spectra for chaos. The corresponding higher-order spectra indicate that although some individual nonlinear interactions weaken as nonlinearity increases, the number of nonlinearly interacting Fourier modes increases. Trispectra indicate that the cubic interactions gradually evolve from encompassing a few quartets of Fourier components for period-1 motion to encompassing many quartets for chaos. For chaos, all the components within the energetic part of the power spectrum are cubically (but not quadratically) coupled to each other.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of seven published/submitted papers, of which one has been published, three accepted for publication and the other three are under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of proposing strategies for the performance control of Distributed Generation (DG) system with digital estimation of power system signal parameters. Distributed Generation (DG) has been recently introduced as a new concept for the generation of power and the enhancement of conventionally produced electricity. Global warming issue calls for renewable energy resources in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cell and micro turbine will gain substantial momentum in the near future. Technically, DG can be a viable solution for the issue of the integration of renewable or non-conventional energy resources. Basically, DG sources can be connected to local power system through power electronic devices, i.e. inverters or ac-ac converters. The interconnection of DG systems to power system as a compensator or a power source with high quality performance is the main aim of this study. Source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, distortion at the point of common coupling in weak source cases, source current power factor, and synchronism of generated currents or voltages are the issues of concern. The interconnection of DG sources shall be carried out by using power electronics switching devices that inject high frequency components rather than the desired current. Also, noise and harmonic distortions can impact the performance of the control strategies. To be able to mitigate the negative effect of high frequency and harmonic as well as noise distortion to achieve satisfactory performance of DG systems, new methods of signal parameter estimation have been proposed in this thesis. These methods are based on processing the digital samples of power system signals. Thus, proposing advanced techniques for the digital estimation of signal parameters and methods for the generation of DG reference currents using the estimates provided is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. One of the main parameters of a power system signal is its frequency. Phasor Measurement (PM) technique is one of the renowned and advanced techniques used for the estimation of power system frequency. Chapter 2 focuses on an in-depth analysis conducted on the PM technique to reveal its strengths and drawbacks. The analysis will be followed by a new technique proposed to enhance the speed of the PM technique while the input signal is free of even-order harmonics. The other techniques proposed in this thesis as the novel ones will be compared with the PM technique comprehensively studied in Chapter 2. An algorithm based on the concept of Kalman filtering is proposed in Chapter 3. The algorithm is intended to estimate signal parameters like amplitude, frequency and phase angle in the online mode. The Kalman filter is modified to operate on the output signal of a Finite Impulse Response (FIR) filter designed by a plain summation. The frequency estimation unit is independent from the Kalman filter and uses the samples refined by the FIR filter. The frequency estimated is given to the Kalman filter to be used in building the transition matrices. The initial settings for the modified Kalman filter are obtained through a trial and error exercise. Another algorithm again based on the concept of Kalman filtering is proposed in Chapter 4 for the estimation of signal parameters. The Kalman filter is also modified to operate on the output signal of the same FIR filter explained above. Nevertheless, the frequency estimation unit, unlike the one proposed in Chapter 3, is not segregated and it interacts with the Kalman filter. The frequency estimated is given to the Kalman filter and other parameters such as the amplitudes and phase angles estimated by the Kalman filter is taken to the frequency estimation unit. Chapter 5 proposes another algorithm based on the concept of Kalman filtering. This time, the state parameters are obtained through matrix arrangements where the noise level is reduced on the sample vector. The purified state vector is used to obtain a new measurement vector for a basic Kalman filter applied. The Kalman filter used has similar structure to a basic Kalman filter except the initial settings are computed through an extensive math-work with regards to the matrix arrangement utilized. Chapter 6 proposes another algorithm based on the concept of Kalman filtering similar to that of Chapter 3. However, this time the initial settings required for the better performance of the modified Kalman filter are calculated instead of being guessed by trial and error exercises. The simulations results for the parameters of signal estimated are enhanced due to the correct settings applied. Moreover, an enhanced Least Error Square (LES) technique is proposed to take on the estimation when a critical transient is detected in the input signal. In fact, some large, sudden changes in the parameters of the signal at these critical transients are not very well tracked by Kalman filtering. However, the proposed LES technique is found to be much faster in tracking these changes. Therefore, an appropriate combination of the LES and modified Kalman filtering is proposed in Chapter 6. Also, this time the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 7 proposes the other algorithm based on the concept of Kalman filtering similar to those of Chapter 3 and 6. However, this time an optimal digital filter is designed instead of the simple summation FIR filter. New initial settings for the modified Kalman filter are calculated based on the coefficients of the digital filter applied. Also, the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 8 uses the estimation algorithm proposed in Chapter 7 for the interconnection scheme of a DG to power network. Robust estimates of the signal amplitudes and phase angles obtained by the estimation approach are used in the reference generation of the compensation scheme. Several simulation tests provided in this chapter show that the proposed scheme can very well handle the source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, and synchronism of generated currents or voltages. The purposed compensation scheme also prevents distortion in voltage at the point of common coupling in weak source cases, balances the source currents, and makes the supply side power factor a desired value.
Resumo:
Motor vehicle emissions have been identified as one of the major contributors of fine and ultrafine particles (UFP) in urban areas. Schools located near major roads could potentially be exposed to high levels of UPFs and school classroom is an important microenvironment where significant exposure to UFPs is likely to occur. Most of the research conducted to date has investigated the relationship between indoor and outdoor particle number concentration (PNC) in schools based on one outdoor location, which may introduce a level of error when calculating the variation of total UPFs, and can result in the underestimation or overestimation of indoor to outdoor (I/O) ratio values.
Resumo:
The rate of emotional and behavioral disturbance in children with intellectual disability (ID) is up to four times higher than that of their typically developing peers. It is important to identify these difficulties in children with ID as early as possible to prevent the chronic co-morbidity of ID and psychopathology. Children with ID have traditionally been assessed via proxy reporting, but appropriate and psychometrically rigorous instruments are needed so that children can report on their own emotions and behaviors. In this study, the factor structure of the self-report version of the Strengths and Difficulties Questionnaire (SDQ) was examined in a population of 128 children with ID (mean age = 12 years). Exploratory and Confirmatory Factor Analysis showed a three factor model (comprising Positive Relationships, Negative Behavior and Emotional Competence) to be a better measure than the original five factor SDQ model in this population.
Resumo:
High resolution TEM images of boron carbide (B13C2) have been recorded and compared with images calculated using the multislice method as implemented by M. A. O'Keefe in the SHRLI programs. Images calculated for the [010] zone, using machine parameters for the JEOL 2000FX AEM operating at 200 keV, indicate that for the structure model of Will et al., the optimum defocus image can be interpreted such that white spots correspond to B12 icosahedra for thin specimens and to low density channels through the structure adjacent to the direct inter-icosahedral bonds for specimens of intermediate thickness (-40 > t > -100 nm). With this information, and from the symmetry observed in the TEM images, it is likely that the (101) twin plane passes through the center of icosahedron located at the origin. This model was tested using the method of periodic continuation. Resulting images compare favorably with experimental images, thus supporting the structural model. The introduction of a (101) twin plane through the origin creates distortions to the icosahedral linkages as well as to the intra-icosahedral bonding. This increases the inequivalence of adjacent icosahedral sites along the twin plane, and thereby increases the likelihood of bipolaron hopping.
Resumo:
This paper presents the details of numerical studies on the shear behaviour and strength of lipped channel beams (LCBs) with stiffened web openings. Over the last couple of decades, cold-formed steel beams have been used extensively in residential, industrial and commercial buildings as primary load bearing structural components. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. Our research has shown that shear strengths of LCBs were reduced by up to 70% due to the inclusion of web openings. Hence there is a need to improve the shear strengths of LCBs with web openings. A cost effective way to improve the detrimental effects of a large web opening is to attach appropriate stiffeners around the web openings in order to restore the original shear strength and stiffness of LCBs. Hence numerical studies were undertaken to investigate the shear strengths of LCBs with stiffened web openings. In this research, finite element models of LCBs with stiffened web openings in shear were developed to simulate the shear behaviour and strength of LCBs. Various stiffening methods using plate and LCB stud stiffeners attached to LCBs using screw-fastening were attempted. The developed models were then validated by comparing their results with experimental results and used in parametric studies. Both finite element analysis and experimental results showed that the stiffening arrangements recommended by past re-search for cold-formed steel channel beams are not adequate to restore the shear strengths of LCBs with web openings. Therefore new stiffener arrangements were proposed for LCBs with web openings based on experimental and finite element analysis results. This paper presents the details of finite element models and analyses used in this research and the results including the recommended stiffener arrangements.
Resumo:
Background Family child care homes (FCCHs) are the second-largest provider of nonrelative care in the U.S. However, despite providing care for nearly 1.9 million children aged <5 years, little is known about the nutrition and physical activity practices of FCCHs. Purpose To address this gap, this study aims to describe policies and practices related to nutrition and physical activity in a representative sample of FCCHs. Methods A stratified random sample of registered FCCHs operating in Kansas (N=297) completed the Nutrition and Physical Activity Self Assessment for Child Care (NAPSACC) instrument. Prevalence estimates and 95% CIs for meeting or exceeding accepted child care standards were calculated using SAS PROC SURVEYFREQ. Results Most providers either met or exceeded child care standards related to serving fruit and vegetables and provision of daily physical activity. Very few providers reported serving fried meats or vegetables or unhealthy snack foods on a regular basis. Areas of concern included infrequent servings of low-fat milk, frequent use of unhealthy foods for celebrations, widespread use of TV and video games throughout the day, restricting physical activity for children who misbehave, and lack of appropriate indoor spaces for physical activity. Only a small percentage of providers reported receiving regular training in nutrition or physical activity. Relatively few providers had written guidelines on nutrition or physical activity. Conclusions Some strengths were exhibited by FCCHs, but substantial weaknesses were shown with respect to meeting established child care standards for nutrition and physical activity. Interventions to promote healthy eating and regular physical activity in FCCHs are thus warranted.
Resumo:
Steady state entanglement in ensembles of harmonic oscillators with a common squeezed reservoir is studied. Under certain conditions the ensemble features genuine multipartite entanglement in the steady state. Several analytic results regarding the bipartite and multipartite entanglement properties of the system are derived. We also discuss a possible experimental implementation which may exhibit steady state genuine multipartite entanglement.
Resumo:
Aboriginal protocol usually links the right to tell a story with a declaration of involvement or connection to the story. I am Aboriginal . . . I am a woman, daughter, sister, aunty and wife. I am also a mother to three beautiful children aged 6, 4 and 2 years. To my children at this point in their lives, I am their provider, nurturer, teacher, cook, taxi driver, mediator, stylist, Elder, slave, and expert on all there is to know in the world. Being the centre of the universe to three impressionable young minds is a role that I cherish deeply, and I take the responsibilities of it very seriously. I love the job of parenting. As any parent would agree, it is the most challenging and difficult job of all, but the opportunity to bring a life into the world and shape and mould a little person into a big person brings rewards that no career can.
Resumo:
Strengths-based approaches draw upon frameworks and perspectives from social work and psychology but have not necessarily been consistently defined or well articulated across disciplines. Internationally, there are increasing calls for professionals in early years settings to work in strengths-based ways to support the access and participation of all children and families, especially those with complex needs. The purpose of this paper is to examine a potential promise of innovative uses of strengths-based approaches in early years practice and research in Australia, and to consider implications for application in other national contexts. In this paper, we present three cases (summarised from larger studies) depicting different applications of the Strengths Approach, under pinned by collaborative inquiry at the interface between practice and research. Analysis revealed three key themes across the cases: (i) enactment of strengths-based principles, (ii) the bi-directional and transformational influences of the Strengths Approach (research into practice/practice into research), and (iii) heightened practitioner and researcher awareness of, and responsiveness to, the operation of power. The findings highlight synergies and challenges to constructing and actualising strengths-based approaches in early years childhood research and practice. The case studies demonstrate that although constructions of what constitutes strengths-based research and practice requires ongoing critical engagement, redefining, and operationalising, using strengths-based approaches in early years settings can be generative and worthwhile.
Resumo:
Austroads called for responses to a tender to investigate options for rehabilitation in alcohol interlock programs. Following successful application by the Centre for Accident Research and Road Safety – Queensland (CARRS‐Q), a program of work was developed. The project has four objectives: 1. Develop a matrix outlining existing policies in national and international jurisdictions with respect to treatment and rehabilitation programs and criteria for eligibility for interlock removal; 2. Critically review the available literature with a focus on evaluation outcomes regarding the effectiveness of treatment and rehabilitation programs; 3. Analyse and assess the strengths and weaknesses of the programs/approaches identified; and, 4. Outline options with an evidence base for consideration by licensing authorities...
Resumo:
Classification criteria should facilitate selection of similar patients for clinical and epidemiologic studies, therapeutic trials, and research on etiopathogenesis to enable comparison of results across studies from different centers. We critically appraise the validity and performance of the Assessment of SpondyloArthritis international Society (ASAS) classification criteria for axial spondyloarthritis (axSpA). It is still debatable whether all patients fulfilling these criteria should be considered as having true axSpA. Patients with radiographically evident disease by the ASAS criteria are not necessarily identical with ankylosing spondylitis (AS) as classified by the modified New York criteria. The complex multi-arm selection design of the ASAS criteria induces considerable heterogeneity among patients so classified, and applying them in settings with a low prevalence of axial spondyloarthritis (SpA) greatly increases the proportion of subjects falsely classified as suffering from axial SpA. One of the unmet needs in non-radiographic form of axial SpA is to have reliable markers that can identify individuals at risk for progression to AS and thereby facilitate early intervention trials designed to prevent such progression. We suggest needed improvements of the ASAS criteria for axSpA, as all criteria sets should be regarded as dynamic concepts open to modifications or updates as our knowledge advances.