57 resultados para C28S triaromatic steroid
em Queensland University of Technology - ePrints Archive
Resumo:
Female sex hormones are known to regulate the adaptive and innate immune functions of the female reproductive tract. This review aims to update our current knowledge of the effects of the sex hormones estradiol and progesterone in the female reproductive tract on innate immunity, antigen presentation, specific immune responses, antibody secretion, genital tract infections caused by Chlamydia trachomatis, and vaccine-induced immunity.
Resumo:
Introduction : For the past decade, three dimensional (3D) culture has served as a foundation for regenerative medicine study. With an increasing awareness of the importance of cell-cell and cell-extracellular matrix interactions which are lacking in 2D culture system, 3D culture system has been employed for many other applications namely cancer research. Through development of various biomaterials and utilization of tissue engineering technology, many in vivo physiological responses are now better understood. The cellular and molecular communication of cancer cells and their microenvironment, for instance can be studied in vitro in 3D culture system without relying on animal models alone. Predilection of prostate cancer (CaP) to bone remains obscure due to the complexity of the mechanisms and lack of proper model for the studies. In this study, we aim to investigate the interaction between CaP cells and osteoblasts simulating the natural bone metastasis. We also further investigate the invasiveness of CaP cells and response of androgen sensitve CaP cells, LNCaP to synthetic androgen.----- Method : Human osteoblast (hOB) scaffolds were prepared by seeding hOB on medical grade polycaprolactone-tricalcium phosphate (mPLC-TCP) scaffolds and induced to produce bone matrix. CaP cell lines namely wild type PC3 (PC3-N), overexpressed prostate specific antigen PC3 (PC3k3s5) and LNCaP were seeded on hOB scaffolds as co-cultures. Morphology of cells was examined by Phalloidin-DAPI and SEM imaging. Gelatin zymography was performed on the 48 hours conditioned media (CM) from co-cultures to determine matrix metalloproteinase (MMP) activity. Gene expression of hOB/LNCaP co-cultures which were treated for 48 hours with 1nM synthetic androgen R1881 were analysed by quantitative real time PCR (qRT-PCR).----- Results : Co-culture of PCC/hOB revealed that the morphology of PCCs on the tissue engineered bone matrix varied from homogenous to heterogenous clusters. Enzymatically inactive pro-MMP2 was detected in CM from hOBs and PCCs cultured on scaffolds. Elevation in MMP9 activity was found only in hOB/PC3N co-culture. hOB/LNCaP co-culture showed increase in expression of key enzymes associated with steroid production which also corresponded to an increase in prostate specific antigen (PSA) and MMP9.----- Conclusions : Upregulation of MMP9 indicates involvement of ECM degradation during cancer invasion and bone metastases. Expression of enzymes involved in CaP progression, PSA, which is not expressed in osteoblasts, demonstrates that crosstalk between PCCs and osteoblasts may play a part in the aggressiveness of CaP. The presence of steroidogenic enzymes, particularly, RDH5, in osteoblasts and stimulated expression in co-culture, may indicate osteoblast production of potent androgens, fuelling cancer cell proliferation. Based on these results, this practical 3D culture system may provide greater understanding into CaP mediated bone metastasis. This allows the role of the CaP/hOB interaction with regards to invasive property and steroidogenesis to be further explored.
Resumo:
Sex hormone-binding globulin (SHBG) is a homodimeric plasma glycoprotein that is the major sex steroid carrier-protein in the bloodstream and functions also as a key regulator of steroid bioavailability within target tissues, such as the prostate. Additionally, SHBG binds to prostatic cell membranes via the putative and unidentified SHBG receptor (RSHBG), activating a signal transduction pathway implicated in stimulating both proliferation and expression of prostate specific antigen (PSA) in prostate cell lines in vitro. A yeast-two hybrid assay suggested an interaction between SHBG and kallikrein-related protease (KLK) 4, which is a serine protease implicated in the progression of prostate cancer. The potential interaction between these two proteins was investigated in this PhD thesis to determine whether SHBG is a proteolytic substrate of KLK4 and other members of the KLK family including KLK3/PSA, KLK7 and KLK14. Furthermore, the effects from SHBG proteolytic degradation on SHBG-regulated steroid bioavailability and the activation of the putative RSHBG signal transduction pathway were examined in the LNCaP prostate cancer cell line. SHBG was found to be a proteolytic substrate of the trypsin-like KLK4 and KLK14 in vitro, yielding several proteolysis fragments. Both chymotrypsin-like PSA and KLK7 displayed insignificant proteolytic activity against SHBG. The kinetic parameters of SHBG proteolysis by KLK4 and KLK14 demonstrate a strong enzyme-substrate binding capacity, possessing a Km of 1.2 ± 0.7 µM and 2.1 ± 0.6 µM respectively. The catalytic efficiencies (kcat/Km) of KLK4 and KLK14 proteolysis of SHBG were 1.6 x 104 M-1s-1 and 3.8 x 104 M-1s-1 respectively, which were comparable to parameters previously reported for peptide substrates. N-terminal sequencing of the fragments revealed cleavage near the junction of the N- and C-terminal laminin globulin-like (G-like) domains of SHBG, resulting in the division of the two globulins and ultimately the full degradation of these fragments by KLK4 and KLK14 over time. Proteolytic fragments that may retain steroid binding were rapidly degraded by both proteases, while fragments containing residues beyond the steroid binding pocket were less degraded over the same period of time. Degradation of SHBG was inhibited by the divalent metal cations calcium and zinc for KLK4, and calcium, zinc and magnesium for KLK14. The human secreted serine protease inhibitors (serpins), α1-antitrypsin and α2-antiplasmin, inhibited KLK4 and KLK14 proteolysis of SHBG; α1-antichymotrypsin inhibited KLK4 but not KLK14 activity. The inhibition by these serpins was comparable and in some cases more effective than general trypsin protease inhibitors such as aprotinin and phenylmethanesulfonyl fluoride (PMSF). The binding of 5α-dihydrotestosterone (DHT) to SHBG modulated interactions with KLK4 and KLK14. Steroid-free SHBG was more readily digested by both enzymes than DHT-bound SHBG. Moreover, a binding interaction exists between SHBG and pro-KLK4 and pro-KLK14, with DHT strengthening the binding to pro-KLK4 only. The inhibition of androgen uptake by cultured prostate cancer cells, mediated by SHBG steroid-binding, was examined to assess whether SHBG proteolysis by KLK4 and KLK14 modulated this process. Proteolytic digestion eliminated the ability of SHBG to inhibit the uptake of DHT from conditioned media into LNCaP cells. Therefore, the proteolysis of SHBG by KLK4 and KLK14 increased steroid bioavailability in vitro, leading to an increased uptake of androgens by prostate cancer cells. Interestingly, different transcriptional responses of PSA and KLK2, which are androgen-regulated genes, to DHT-bounsd SHBG treatment were observed between low and high passage number LNCaP cells (lpLNCaP and hpLNCaP respectively). HpLNCaP cells treated with DHT-bound SHBG demonstrated a significant synergistic upregulation of PSA and KLK2 above DHT or SHBG treatment alone, which is similar to previously reported downstream responses from RSHBG-mediated signaling activation. As this result was not seen in lpLNCaP cells, only hpLNCaP cells were further investigated to examine the modulation of potential RSHBG activity by KLK4 and KLK14 proteolysis of SHBG. Contrary to reported results, no increase in intracellular cAMP was observed in hpLNCaP cells when treated with SHBG in the presence and absence of either DHT or estradiol. As a result, the modulation of RSHBG-mediated signaling activation could not be determined. Finally, the identification of the RSHBG from both breast (MCF-7) and prostate cancer (LNCaP) cell lines was attempted. Fluorescently labeled peptides corresponding to the putative receptor binding domain (RBD) of SHBG were shown to be internalized by MCF-7 cells. Crosslinking of the RBD peptide to the cell surfaces of both MCF-7 and LNCaP cells, demonstrated the interaction of the peptide with several targets. These targets were then captured using RBD peptides synthesized onto a hydrophilic scaffold and analysed by mass spectrometry. The samples captured by the RBD peptide returned statistically significantly matches for cytokeratin 8, 18 and 19 as well as microtubule-actin crosslinking factor 1, which may indicate a novel interaction between SHBG and these proteins, but ultimately failed to detect a membrane receptor potentially responsible for the putative RSHBG-mediated signaling. This PhD project has reported the proteolytic processing of SHBG by two members of the kallikrein family, KLK4 and KLK14. The effect of SHBG proteolysis by KLK4 and KLK14 on RSHBG-mediated signaling activation was unable to be determined as the reported signal transduction pathway was not activated after treatment with SHBG, in combination with either DHT or estradiol. However, the digestion of SHBG by these two proteases positively regulated androgen bioavailability to prostate cancer cells in vitro. The increased uptake of androgens is deleterious in prostate cancer due to the promotion of proliferation, metastasis, invasion and the inhibition of apoptosis. The increased bioavailability of androgens, from SHBG proteolysis by KLK4 and KLK14, may therefore promote both carcinogenesis and progression of prostate cancer. Finally, this information may contribute to the development of therapeutic treatment strategies for prostate cancer by inhibiting the proteolysis of SHBG, by KLK4 and KLK14, to prevent the increased uptake of androgens by hormone-dependent cancerous tissues.
Resumo:
Transmissible diseases are re-emerging as a global problem, with Sexually Transmitted Diseases (STDs) becoming endemic. Chlamydia trachomatis is the leading cause of bacterially-acquired STD worldwide, with the Australian cost of infection estimated at $90 - $160 million annually. Studies using animal models of genital tract Chlamydia infection suggested that the hormonal status of the genital tract epithelium at the time of exposure may influence the outcome of infection. Oral contraceptive use also increased the risk of contracting chlamydial infections compared to women not using contraception. Generally it was suggested that the outcome of chlamydial infection is determined in part by the hormonal status of the epithelium at the time of exposure. Using the human endolmetrial cell line ECC-1 this study investigated the effects of C. trachomatis serovar D infection, in conjunction with the female sex hormones, 17β-estradiol and progesterone, on chlamydial gene expression. While previous studies have examined the host response, this is the first study to examine C.trachomatis gene expression under different hormonal conditions. We have highlighted a basic model of C. trachomatis gene regulation in the presence of steroid hormones by identifying 60 genes that were regulated by addition of estradiol and/or progesterone. In addition, the third chapter of this thesis discussed and compared the significance of the current findings in the context of data from other research groups to improve our understanding of the molecular basis of chlamydial persistence under hormonal different conditions. In addition, this study analysed the effects of these female sex hormones and C. trachomatis Serovar D infection, on host susceptibility and bacterial growth. Our results clearly demonstrated that addition of steroid hormones not only had a great impact on the level of infectivity of epithelial cells with C.trachomatis serovar D, but also the morphology of chlamydial inclusions was affected by hormone supplementation.
Resumo:
Vitamin D is unique among the vitamins in that humans can synthesize it via the action of UV radiation upon the skin. This combined with its ability to act on specific target tissues via Vitamin D Receptor’s (VDR) make its classification as a steroid hormone more appropriate. While Vitamin D deficiency is a recognized problem in some northern latitude countries, recent studies have shown even in sunny countries such as Australia, vitamin D deficiency may be more prevalent than first thought. Vitamin D is most well known for its role in bone health, however, the discovery of VDR’s on a wide variety of tissue types has also opened up roles for vitamin D far beyond traditional bone health. These include possible associations with autoimmune diseases such as multiple sclerosis and inflammatory bowel diseases, cancer, cardiovascular diseases and muscle strength. Firstly, this paper presents an overview of the two sources of vitamin D: exposure to ultraviolet-B radiation and food sources of vitamin D, with particular focus on both Australian and international studies on dietary vitamin D intake and national fortification strategies. Secondly, the paper reviews recent epidemiological and experimental evidence linking vitamin D and its role in health and disease for the major conditions linked to suboptimal vitamin D, while identifying significant gaps in the research and possible future directions for research.
Disruption of androgen regulation in the prostate by the environmental contaminant hexachlorobenzene
Resumo:
Hexachlorobenzene (HCB) is a persistent environmental contaminant that has the potential to interfere with steroid hormone regulation. The prostate requires precise control by androgens to regulate its growth and function. To determine if HCB impacts androgen action in the prostate, we used a number of methods. Our in vitro cell-culture-based assay used a firefly luciferase reporter gene driven by an androgen-responsive promoter. In the presence of dihydrotestosterone, low concentrations (0.5-5 nM) of HCB increased the androgen-responsive production of firefly luciferase and high concentrations of HCB (> 10 microM) suppressed this transcriptional activity. Results from a binding assay showed no evidence of affinity between HCB and the androgen receptor. We also tested HCB for in vivo effects using transgenic mice in which the transgene was a prostate-specific, androgen-responsive promoter upstream of a chloramphenicol acetyl transferase (CAT) reporter gene. In 4-week-old mice, the proportion of dilated prostate acini, a marker of sexual maturity, increased in the low HCB dose group and decreased in the high HCB dose mice. In the 8-week-old mice, there was a significant decrease in both CAT activity and prostate weight upon exposure to 20 mg/kg/day HCB. Therefore, in vitro and in vivo data suggest that HCB weakly agonizes androgen action, and consequently, low levels of HCB enhanced androgen action but high levels of HCB interfered. Environmental contaminants have been implicated in the rising incidence of prostate cancer, and insight into the mechanisms of endocrine disruption will help to clarify their role.
Resumo:
Systemic acquired resistance (SAR) is a broad-spectrum resistance in plants that involves the upregulation of a battery of pathogenesis-related (PR) genes. NPR1 is a key regulator in the signal transduction pathway that leads to SAR. Mutations in NPR1 result in a failure to induce PR genes in systemic tissues and a heightened susceptibility to pathogen infection, whereas overexpression of the NPR1 protein leads to increased induction of the PR genes and enhanced disease resistance. We analyzed the subcellular localization of NPR1 to gain insight into the mechanism by which this protein regulates SAR. An NPR1–green fluorescent protein fusion protein, which functions the same as the endogenous NPR1 protein, was shown to accumulate in the nucleus in response to activators of SAR. To control the nuclear transport of NPR1, we made a fusion of NPR1 with the glucocorticoid receptor hormone binding domain. Using this steroid-inducible system, we clearly demonstrate that nuclear localization of NPR1 is essential for its activity in inducing PR genes.