198 resultados para Bus-stop locations

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measures of transit accessibility are important in evaluating transit services, planning for future services and investment on land use development. Existing tools measure transit accessibility using averaged walking distance or walking time to public transit. Although the mode captivity may have significant implications on one’s willingness to walk to use public transit, this has not been addressed in the literature to date. Failed to distinguish transit captive users may lead to overestimated ridership and spatial coverage of transit services. The aim of this research is to integrate the concept of transit captivity into the analysis of walking access to public transit. The conventional way of defining “captive” and “choice” transit users showed no significant difference in their walking times according to a preliminary analysis. A cluster analysis technique is used to further divide “choice” users by three main factors, namely age group, labour force status and personal income. After eliminating “true captive” users, defined as those without driver’s licence or without a car in respective household, “non-true captive” users were classified into a total of eight groups having similar socio-economic characteristics. The analysis revealed significant differences in the walking times and patterns by their level of captivity to public transit. This paper challenges the rule-of-thumb of 400m walking distance to bus stops. In average, people’s willingness to walk dropped drastically at 268m and continued to drop constantly until it reached the mark of 670m, where there was another drastic drop of 17%, which left with only 10% of the total bus riders willing to walk 670m or more. This research found that mothers working part time were the ones with lowest transit captivity and thus most sensitive to the walking time, followed by high-income earners and the elderly. The level of captivity increases when public transit users earned lesser income, such as students and students working part time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The common approach to estimate bus dwell time at a BRT station is to apply the traditional dwell time methodology derived for suburban bus stops. In spite of being sensitive to boarding and alighting passenger numbers and to some extent towards fare collection media, these traditional dwell time models do not account for the platform crowding. Moreover, they fall short in accounting for the effects of passenger/s walking along a relatively longer BRT platform. Using the experience from Brisbane busway (BRT) stations, a new variable, Bus Lost Time (LT), is introduced in traditional dwell time model. The bus lost time variable captures the impact of passenger walking and platform crowding on bus dwell time. These are two characteristics which differentiate a BRT station from a bus stop. This paper reports the development of a methodology to estimate bus lost time experienced by buses at a BRT platform. Results were compared with the Transit Capacity and Quality of Servce Manual (TCQSM) approach of dwell time and station capacity estimation. When the bus lost time was used in dwell time calculations it was found that the BRT station platform capacity reduced by 10.1%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The common approach to estimate bus dwell time at a BRT station platform is to apply the traditional dwell time methodology derived for suburban bus stops. Current dwell time models are sensitive towards bus type, fare collection policy along with the number of boarding and alighting passengers. However, they fall short in accounting for the effects of passenger/s walking on a relatively longer BRT station platform. Analysis presented in this paper shows that the average walking time of a passenger at BRT platform is 10 times more than that of bus stop. The requirement of walking to the bus entry door at the BRT station platform may lead to the bus experiencing a higher dwell time. This paper presents a theory for a BRT network which explains the loss of station capacity during peak period operation. It also highlights shortcomings of present available bus dwell time models suggested for the analysis of BRT operation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bus Rapid Transit (BRT), because of its operational flexibility and simplicity, is rapidly gaining popularity with urban designers and transit planners. Earlier BRTs were bus shared lane or bus only lane, which share the roadway with general and other forms of traffic. In recent time, more sophisticated designs of BRT have emerged, such as busway, which has separate carriageway for buses and provides very high physical separation of buses from general traffic. Line capacities of a busway are predominately dependent on bus capacity of its stations. Despite new developments in BRT designs, the methodology of capacity analysis is still based on traditional principles of kerbside bus stop on bus only lane operations. Consequently, the tradition methodology lacks accounting for various dimensions of busway station operation, such as passenger crowd, passenger walking and bus lost time along the long busway station platform. This research has developed a purpose made bus capacity analysis methodology for busway station analysis. Extensive observations of kerbside bus stops and busway stations in Brisbane, Australia were made and differences in their operation were studied. A large scale data collection was conducted using the video recording technique at the Mater Hill Busway Station on the South East Busway in Brisbane. This research identified new parameters concerning busway station operation, and through intricate analysis identified the elements and processes which influence the bus dwell time at a busway station platform. A new variable, Bus lost time, was defined and its quantitative descriptions were established. Based on these finding and analysis, a busway station platform bus capacity methodology was developed, comprising of new models for busway station lost time, busway station dwell time, busway station loading area bus capacity, and busway station platform bus capacity. The new methodology not only accounts for passenger boarding and alighting, but also covers platform crowd and bus lost time in station platform bus capacity estimation. The applicability of this methodology was shown through demonstrative examples. Additionally, these examples illustrated the significance of the bus lost time variable in determining station capacities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Internationally, transit oriented development (TOD) is characterised by moderate to high density development with diverse land use patterns and well connected street networks centred around high frequency transit stops (bus and rail). Although different TOD typologies have been developed in different contexts, they are based on subjective evaluation criteria derived from the context in which they are built and typically lack a validation measure. Arguably there exist sets of TOD characteristics that perform better in certain contexts, and being able to optimise TOD effectiveness would facilitate planning and supporting policy development. This research utilises data from census collection districts (CCDs) in Brisbane with different sets of TOD attributes measured across six objectively quantified built environmental indicators: net employment density, net residential density, land use diversity, intersection density, cul-de-sac density, and public transport accessibility. Using these measures, a Two Step Cluster Analysis was conducted to identify natural groupings of the CCDs with similar profiles, resulting in four unique TOD clusters: (a) residential TODs, (b) activity centre TODs, (c) potential TODs, and; (d) TOD non-suitability. The typologies are validated by estimating a multinomial logistic regression model in order to understand the mode choice behaviour of 10,013 individuals living in these areas. Results indicate that in comparison to people living in areas classified as residential TODs, people who reside in non-TOD clusters were significantly less likely to use public transport (PT) (1.4 times), and active transport (4 times) compared to the car. People living in areas classified as potential TODs were 1.3 times less likely to use PT, and 2.5 times less likely to use active transport compared to using the car. Only a little difference in mode choice behaviour was evident between people living in areas classified as residential TODs and activity centre TODs. The results suggest that: (a) two types of TODs may be suitable for classification and effect mode choice in Brisbane; (b) TOD typology should be developed based on their TOD profile and performance matrices; (c) both bus stop and train station based TODs are suitable for development in Brisbane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Technological advances have led to an ongoing spread of public displays in urban areas. However, they still mostly show passive content such as commercials and digital signage. Researchers took notice of their potential to spark situated civic discourse in public space and have begun working on interactive public display applications. Attracting people’s attention and providing a low barrier for user participation have been identified as major challenges in their design. This thesis presents Vote With Your Feet, a hyperlocal public polling tool for urban screens allowing users to express their opinions. Similar to vox populi interviews on TV or polls on news websites, the tool is meant to reflect the mindset of the community on topics such as current affairs, cultural identity and local matters. It shows one Yes/No question at a time and enables users to vote by stepping on one of two tangible buttons on the ground. This user interface was introduced to attract people’s attention and to lower participation barriers. Vote With Your Feet was informed by a user-centred design approach that included a focus group, expert interviews and extensive preliminary user studies in the wild. Deployed at a bus stop, Vote With Your Feet was evaluated in a field study over the course of several days. Observations of people and interviews with 30 participants revealed that the novel interaction technology was perceived as inviting and that Vote With Your Feet can spark discussions among co-located people.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Tim Kring, Creator of the hit television show 'Heroes' tells how the big idea began, and where you can jump in. "A few years ago, I started thinking about an entirely new way to tell a story, far different from traditional TV. I didn't just want to talk about 'saving the world' in fiction, I wanted to create a narrative that spilled out into the streets. One that you could live inside of for a while. How cool would it be, I thought, to create a story that exists all around you all of the time? On your laptop, your mobile phone, on your sidewalks, as a secret message hidden in your favorite song or while standing at the bus stop on your way to work. And, taking it further, what if your participation over a few weeks or months actually impacts the story's development and creates positive change in the real world because a philanthropic mission is integrated into the narrative itself? The Conspiracy For Good is the culmination of this dream. This is the pilot project for a first-of-itskind interactive story that empowers its audience to take real-life action and create positive change in the world. Call it Social Benefit Storytelling. To achieve this, I need you to participate. Reality and fiction have to blur. Every story needs a villain and you will meet the villain in the STORY SO FAR section on this site. And every story needs a hero. That's where YOU come in. As part of The Conspiracy For Good you will join a collective of thinkers, artists, musicians, and causes, creating a unified voice to fight the forces of social and environmental injustice. This is our site, where together we can follow the story and build a community that focuses on changing the world for the better, one person and one action at a time. Welcome to the Conspiracy." Tim Kring"

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emission factors of a bus fleet consisting of approximately three hundreds diesel powered buses were measured in a tunnel study under well controlled conditions during a two-day monitoring campaign in Brisbane. The number concentration of particles in the size range 0.017-0.7 m was monitored simultaneously by two Scanning Mobility Particle Sizers located at the tunnel’s entrance and exit. The mean value of the number emission factors was found to be (2.44±1.41)×1014 particles km-1. The results are in good agreement with the emission factors determined from steady-state dynamometer testing of 12 buses from the same Brisbane City bus fleet, thus indicating that when carefully designed, both approaches, the dynamometer and on-road studies, can provide comparable results, applicable for the assessment of the effect of traffic emissions on airborne particle pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic emissions are an important contributor to ambient air pollution, especially in large cities featuring extensive and high density traffic networks. Bus fleets represent a significant part of inner city traffic causing an increase in exposure to general public, passengers and drivers along bus routes and at bus stations. Limited information is available on quantification of the levels, and governing parameters affecting the air pollution exposure at bus stations. The presented study investigated the bus emissions-dominated ambient air in a large, inner city bus station, with a specific focus on submicrometer particles. The study’s objectives were (i) quantification of the concentration levels; (ii) characterisation of the spatio-temporal variation; (iii) identification of the parameters governing the emissions levels at the bus station and (iv) assessment of the relationship between particle concentrations measured at the street level (background) and within the bus station. The results show that up to 90% of the emissions at the station are ultrafine particles (smaller than 100 nm), with the concentration levels up to 10 times the value of urban ambient air background (annual) and up to 4 times the local ambient air background. The governing parameters affecting particle concentration at the station were bus flow rate and meteorological conditions (wind velocity). Particle concentration followed a diurnal trend, with an increase in the morning and evening, associated with traffic rush hours. Passengers’ exposure could be significant compared to the average outdoor and indoor exposure levels.