5 resultados para Brogan, Herb
em Queensland University of Technology - ePrints Archive
Resumo:
The technique of femoral cement-in-cement revision is well established, but there are no previous series reporting its use on the acetabular side at the time of revision total hip arthroplasty. We describe the surgical technique and report the outcome of 60 consecutive cement-in-cement revisions of the acetabular component at a mean follow-up of 8.5 years (range 5-12 years). All had a radiologically and clinically well fixed acetabular cement mantle at the time of revision. 29 patients died. No case was lost to follow-up. The 2 most common indications for acetabular revision were recurrent dislocation (77%) and to compliment a femoral revision (20%). There were 2 cases of aseptic cup loosening (3.3%) requiring re-revision. No other hip was clinically or radiologically loose (96.7%) at latest follow-up. One case was re-revised for infection, 4 for recurrent dislocation and 1 for disarticulation of a constrained component. At 5 years, the Kaplan-Meier survival rate was 100% for aseptic loosening and 92.2% (95% CI; 84.8-99.6%) with revision for all causes as the endpoint. These results support the use of the cement-in-cement revision technique in appropriate cases on the acetabular side. Theoretical advantages include preservation of bone stock, reduced operating time, reduced risk of complications and durable fixation.
Resumo:
RNA-dependent RNA polymerase (RDR) activities were readily detected in extracts from cauliflower and broccoli florets, Arabidopsis thaliana (L.) Heynh callus tissue and broccoli nuclei. The synthesis of complementary RNA (cRNA) was independent of a RNA primer, whether or not the primer contained a 3′ terminal 2′-O-methyl group or was phosphorylated at the 5′ terminus. cRNA synthesis in plant extracts was not affected by loss-of-function mutations in the DICER-LIKE (DCL) proteins DCL2, DCL3, and DCL4, indicating that RDRs function independently of these DCL proteins. A loss-of-function mutation in RDR1, RDR2 or RDR6 did not significantly reduce the amount of cRNA synthesis. This indicates that these RDRs did not account for the bulk RDR activities in plant extracts, and suggest that either the individual RDRs each contribute a fraction of polymerase activity or another RDR(s) is predominant in the plant extract. © CSIRO 2008.
Resumo:
Scarring is a significant medical burden; financially to the health care system and physically and psychologically for patients. Importantly, there have been numerous case reports describing the occurrence of cancer in burn scars. Currently available therapies are not satisfactory due to their undesirable side-effects, complex delivery routes, requirements for long-term use and/or expense. Radix Arnebiae (Zi Cao), a perennial herb, has been clinically applied to treat burns and manage scars for thousands of years in Asia. Shikonin, an active component extracted from Radix Arnebiae, has been demonstrated to induce apoptosis in cancer cells. Apoptosis is an essential process during scar tissue remodelling. It was therefore hypothesized that Shikonin may induce apoptosis in scar-associated cells. This investigation presents the first detailed in vitro study examining the functional responses of scar-associated cells to Shikonin, and investigates the mechanisms underlying these responses. The data obtained suggests that Shikonin inhibits cell viability and proliferation and reduces detectable collagen in scar-derived fibroblasts. Further investigation revealed that Shikonin induces apoptosis in scar fibroblasts by differentially regulating the expression of caspase 3, Bcl-2, phospho-Erk1/2 and phospho-p38. In addition, Shikonin down-regulates the expression of collagen I, collagen III and alpha-smooth muscle actin genes hence attenuating collagen synthesis in scar-derived fibroblasts. In summary, it is demonstrated that Shikonin induces apoptosis and decreases collagen production in scar-associated fibroblasts and may therefore hold potential as a novel scar remediation therapy.