11 resultados para Bridgman Solidification

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead is present everywhere in the environment and has been defined as one of the greatest threats to the human health. In this paper, attempts have been made to study a way of recycling the lead produced from waste usage and disposed of in such a way as to avoid degrading the surrounding environment. In order to contain the waste, recycled asphalt material is mixed with the lead and then heated with microwave energy. This is an attempt to solidify and reduce the lead contaminants and use the final product as sub-base material in road pavement construction. The microwave heating of the specimens is carried out with 30%, 50%, 80% and 100% of power at 800W. The optimum power mode is used to compare with the conventional heating of asphalt with sulfur additive. The results are characterized by compact density, permeability, and subjected to toxicity test with regards to lead concentration. A mechanical test to evaluate the stability is also performed on the three methods of solidification and to prove that microwave zapping method allow to convert into an environmentally stable material for recycling without having to be deposited in a landfill site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of cell-–biomaterial systems in regenerative medicine can be facilitated by their successful low temperature preservation. Vitrification, which avoids ice crystal formation by amorphous solidification, is an emerging approach to cryopreservation. Developing vitrification strategy, effective cryopreservation of alginate–fibrin beads with porcine mesenchymal stromal cells has been achieved in this study. The cell–biomaterial constructs were pre-cultured for 20 days before cryopreservation, allowing for cell proliferation and construct stabilization. Ethylene glycol (EG) was employed as the basic cryoprotectant for two equilibration solutions. Successful cryopreservation of the constructs was achieved using vitrification solution composed of penetrating (EG MW 62 Da) and non-penetrating (sucrose MW 342 Da) cryoprotectants. Stepwise procedure of introduction to and removal of cryoprotectants was brief; direct plunging into liquid nitrogen was applied. Cell viability, evaluated by combining live/death staining and confocal laser microscopy, was similar for both control and vitrified cells in the beads. No detectable damage of microstructure of cryopreserved beads was found as shown by scanning electron microscopy. Both osteogenically induced control and vitrified cells in the constructs were equally capable of mineral production and deposition. There was no statistically significant difference in metabolic activity and proliferation between both groups during the entire culture period. Our study leads to the conclusion that the developed cryopreservation protocol allowed to maintain the integrity of the beads while preserving the ability of the pig bone marrow derived mesenchymal stromal cells to proliferate and subsequently differentiate; demonstrating that vitrification is a promising approach for cryopreser-vation of “ready-to-use” cell–biomaterial constructs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

YBa2Cu3O7-δ - 25mol%Y2BaCuO5 bars and thick films have been melt textured using a stationary furnace with a temperature gradient of 3 or 6°C/cm. Samples are heated above the peritectic reaction temperature and quenched to just above the solidification temperature and then slowly cooled below the solidification temperature. All bar shaped samples consist of 2-5 mm grains though the grain orientations strongly depend on the heat treatment conditions. The bar shows the maximum Jc of above 3,000 A/cm2, whereas the maximum Jc of 200 A/cm2 and Tczero of 88K are obtained for the thick film on (100) LaAlO3 single crystal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure of YBa2Cu3O7-δ (YBCO) materials, melt-textured in air and quenched from the temperature range 900-990°C, has been characterized using a combination of x-ray diffractometry, optical microscopy, scanning electron microscopy, transmission electron microscopy, and energy dispersive x-ray spectrometry. BaCu2O2 and BaCuO2 were found to coexist in samples quenched from the temperature range 920-960°C. The formation of BaCu2O2 preceded the formation of YBCO. Once the YBCO had formed, BaCu2O2 was present at the solidification front filling the space between nearly parallel platelets of YBCO. Large Y2BaCuO5 particles at the solidification front appeared divided into smaller ones as a result of their dissolution in the liquid that quenched as BaCu2O2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our micro structural characterisation of Y-Ba-Cu-O quenched partial melts shows that the BaCuO2 (BC1) phase is crystalline at temperatures as high as 1100°C, and that the partial melt self-establishes a micro structural gradient from the surface towards the interior of the samples, which can be associated with a gradient in an equivalent partial pressure of O2 (pO2). The extension of the Y2BaCuO5-YBa2Cu3O7-x (Y211-Y123) tie-line intersects the primary crystallisation field of BC1 first. The actual peritectic reaction that takes place is Y2BaCuO5(s) + BaCuO2(s) + 2BaCu2O2(L) + 1/2O2 → 2YBa2Cu3O6(s). Two schematic representations which allow an analysis of the pO2 dependence are given. The gradient in micro structure self-established by the sample acts as a driving force for texturing. With this new perspective gained about the actual peritectic reaction and mechanisms of melt-texturing of Y123, it is possible to explain most of the aspects about partial melt-texturing. In addition, it seems possible to devise heat treatments that may allow for the production of well-oriented single domains with very large diameters. © 1999 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Layers (about 60-100 μm thick) of almost pure BaCuO2 (BC1), as determined using X-ray diffractometry (XRD) and scanning electron microscopy (SEM), coat the surfaces of YBa2Cu3O7-x (Y123) samples partial melt processed using a single-zone vertical furnace. The actual Cu/Ba ratio of the BC1 phase is 1.2-1.3 as determined using energy dispersive X-ray spectrometry (EDS). The nominally BC1 phase displays an exsolution of BC1.5 or BC2 in the form of thin plates (about 50-100 nm thick) along {100}-type cleavage planes or facets. The exsolved phase also fills cracks within the BC1 layer that require it to be in a molten state at some stage of processing. The samples were influenced by Pt contamination from the supporting wire, which may have stabilised the BC1.5 phase. Many of the Y123 grains have the same morphology as the exsolution domains, and run nearly parallel to the thin plates of the exsolved phases, strongly indicating that Y123 nucleation took place at the interface between the BC1 and the BC1.5 or BC2 exsolved phases. The network of nearly parallel exsolved 'channels' provides a matrix and a mechanism through which a high degree of local texture can be initiated in the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of YBa2Cu3O7-y+20 mol% Y2BaCuO5, with thicknesses ranging between 50-250 μm, have been melt processed and rapidly quenched from temperatures between 985 and 1100°C by immersing them in liquid nitrogen. The phase composition and microstructures of these samples have been characterised using a combination of X-ray diffractometry, optical microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy. The quenched melt of samples quenched from temperatures greater than 985°C appears relatively homogeneous but consists of Ba2Cu3Ox (BC1.5) and BaCu2O2 (BC2) regions. At about 985°C, BaCuO2 (BC1) crystallises from the melt and most of the BC1.5 decomposes into BC1 and CuO or into BC1 and BC2. The crystallisation of BC1 induces segregation of elements in the melt and this is very significant for the melt texturing of YBCO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The one-step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3-hexylthiophene) (P3HT) as well as P3HT:fullerene bulk-heterojunction blends can be spin-coated from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square-centimeter-sized domains that are composed of one spherulite-like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite-like structures. Moreover, grazing-incidence wide-angle X-ray scattering reveals an increased relative degree of crystallinity and predominantly flat-on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip-coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi-crystalline conjugated polymer systems is established. Those include other poly(3-alkylthiophene)s, two polyfluorenes, the low band-gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends. Macroscopic spherulite-like structures of the conjugated polymer poly(3-hexylthiophene) (P3HT) grow directly during spin-coating. This is achieved by processing P3HT or P3HT:fullerene bulk heterojunction blends from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene and a second carrier solvent such as chlorobenzene. Epitaxial growth of the polymer on solidified solvent crystals gives rise to circular-symmetric, spherulite-like structures that feature a high degree of anisotropy.