225 resultados para Breast Cancer Metastasis

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer in its advanced stage has a high predilection to the skeleton. Currently, treatment options of breast cancer-related bone metastasis are restricted to only palliative therapeutic modalities. This is due to the fact that mechanisms regarding the breast cancer celI-bone colonisation as well as the interactions of breast cancer cells with the bone microenvironment are not fully understood, yet. This might be explained through a lack of appropriate in vitro and in vivo models that are currently addressing the above mentioned issue. Hence the hypothesis that the translation of a bone tissue engineering platform could lead to improved and more physiological in vitro and in vivo model systems in order to investigate breast cancer related bone colonisation was embraced in this PhD thesis. Therefore the first objective was to develop an in vitro model system that mimics human mineralised bone matrix to the highest possible extent to examine the specific biological question, how the human bone matrix influences breast cancer cell behaviour. Thus, primary human osteoblasts were isolated from human bone and cultured under osteogenic conditions. Upon ammonium hydroxide treatment, a cell-free intact mineralised human bone matrix was left behind. Analyses revealed a similar protein and mineral composition of the decellularised osteoblast matrix to human bone. Seeding of a panel of breast cancer cells onto the bone mimicking matrix as well as reference substrates like standard tissue culture plastic and collagen coated tissue culture plastic revealed substrate specific differences of cellular behaviour. Analyses of attachment, alignment, migration, proliferation, invasion, as well as downstream signalling pathways showed that these cellular properties were influenced through the osteoblast matrix. The second objective of this PhD project was the development of a human ectopic bone model in NOD/SCID mice using medical grade polycaprolactone tricalcium phosphate (mPCL-TCP) scaffold. Human osteoblasts and mesenchymal stem cells were seeded onto an mPCL-TCP scaffold, fabricated using a fused deposition modelling technique. After subcutaneous implantation in conjunction with the bone morphogenetic protein 7, limited bone formation was observed due to the mechanical properties of the applied scaffold and restricted integration into the soft tissue of flank of NOD/SCID mice. Thus, a different scaffold fabrication technique was chosen using the same polymer. Electrospun tubular scaffolds were seeded with human osteoblasts, as they showed previously the highest amount of bone formation and implanted into the flanks of NOD/SCID mice. Ectopic bone formation with sufficient vascularisation could be observed. After implantation of breast cancer cells using a polyethylene glycol hydrogel in close proximity to the newly formed bone, macroscopic communication between the newly formed bone and the tumour could be observed. Taken together, this PhD project showed that bone tissue engineering platforms could be used to develop an in vitro and in vivo model system to study cancer cell colonisation in the bone microenvironment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthotopic or intracardiac injection of human breast cancer cell lines into immunocompromised mice allows study of the molecular basis of breast cancer metastasis. We have established a quantitative real-time PCR approach to analyze metastatic spread of human breast cancer cells inoculated into nude mice via these routes. We employed MDA-MB-231 human breast cancer cells genetically tagged with a bacterial β-galactosidase (Lac-Z) retroviral vector, enabling their detection by TaqMan® real-time PCR. PCR detection was linear, specific, more sensitive than conventional PCR, and could be used to directly quantitate metastatic burden in bone and soft organs. Attesting to the sensitivity and specificity of the PCR detection strategy, as few as several hundred metastatic MDA-MB-231 cells were detectable in 100 μm segments of paraffin-embedded lung tissue, and only in samples adjacent to sections that scored positive by histological detection. Moreover, the measured real-time PCR metastatic burden in the bone environment (mouse hind-limbs, n = 48) displayed a high correlation to the degree of osteolytic damage observed by high resolution X-ray analysis (r2 = 0.972). Such a direct linear relationship to tumor burden and bone damage substantiates the so-called 'vicious cycle' hypothesis in which metastatic tumor cells promote the release of factors from the bone which continue to stimulate the tumor cells. The technique provides a useful tool for molecular and cellular analysis of human breast cancer metastasis to bone and soft organs, can easily be extended to other cell/marker/organ systems, and should also find application in preclinical assessment of anti-metastatic modalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In contrast to extensive studies on familial breast cancer, it is currently unclear whether defects in DNA double strand break (DSB) repair genes play a role in sporadic breast cancer development and progression. We performed analysis of immunohistochemistry in an independent cohort of 235 were sporadic breast tumours. This analysis suggested that RAD51 expression is increased during breast cancer progression and metastasis and an oncogenic role for RAD51 when deregulated. Subsequent knockdown of RAD51 repressed cancer cell migration in vitro and reduced primary tumor growth in a syngeneic mouse model in vivo. Loss of RAD51 also inhibited associated metastasis not only in syngeneic mice but human xenografts and changed the metastatic gene expression profile of cancer cells, consistent with inhibition of distant metastasis. This demonstrates for the first time a new function of RAD51 that may underlie the proclivity of patients with RAD51 overexpression to develop distant metastasis. RAD51 is a potential biomarker and attractive drug target for metastatic triple negative breast cancer, with the capability to extend the survival of patients, which is less than 6 months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer metastasis to the bone occurs frequently, causing numerous complications including severe pain, fracture, hypercalcemia, and paralysis. Despite its prevalence and severity, few effective therapies exist. To address this, we examined whether the heat shock protein 90 (Hsp90) inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), would be efficacious in inhibiting breast cancer metastasis to bone. Utilizing the human breast cancer subline, MDA-MB-231SA, previously in vivo selected for its enhanced ability to generate osteolytic bone lesions, we determined that 17-AAG potently inhibited its in vitro proliferation and migration. Moreover, 17-AAG significantly reduced MDA-MB-231SA tumor growth in the mammary-fat pad of nude mice. Despite these findings, 17-AAG enhanced the incidence of bone metastasis and osteolytic lesions following intracardiac inoculation in the nude mouse. Consistent with these findings, 17-AAG enhanced osteoclast formation 2- to 4-fold in mouse bone marrow/osteoblast cocultures, receptor activator of nuclear factor κB ligand (BANKL)-stimulated bone marrow, and RAW264.7 cell models of in vitro osteoclastogenesis. Moreover, the drug enhanced osteoclastogenesis in human cord blood progenitor cells, demonstrating that its effects were not limited to mouse models. In addition to 17-AAG, other Hsp90 inhibitors, such as radicicol and herbimycin A, also enhanced osteoclastogenesis. A pro-osteolytic action of 17-AAG independent of tumor presence was also determined in vivo, in which 17-AAG-treated tumor-naive mice had reduced trabecular bone volume with an associated increase in osteoclast number. Thus, HSP90 inhibitors can stimulate osteoclast formation, which may underlie the increased incidence of osteolysis and skeletal tumor incidence causedby 17-AAG in vivo. These data suggest an important contraindication to the Hsp90 targeted cancer therapy currently undergoing clinical trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on the development of a humanised mouse model to investigate human breast cancer metastasis to bone, an incurable disease presenting a major medical challenge in our society. The method is based on tissue-engineered constructs with human cells that generate a human bone-like organ within mice. This novel platform is further applied to mimic human-specific mechanisms of breast cancer metastasis and growth in human bone, and in particular the role of specific cell adhesion molecules in this process is closely investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is a leading contributor to the burden of disease in Australia. Fortunately, the recent introduction of diverse therapeutic strategies have improved the survival outcome for many women. Despite this, the clinical management of breast cancer remains problematic as not all approaches are sufficiently sophisticated to take into account the heterogeneity of this disease and are unable to predict disease progression, in particular, metastasis. As such, women with good prognostic outcomes are exposed to the side effects of therapies without added benefit. Furthermore, women with aggressive disease for whom these advanced treatments would deliver benefit cannot be distinguished and opportunities for more intensive or novel treatment are lost. This study is designed to identify novel factors associated with disease progression, and the potential to inform disease prognosis. Frequently overlooked, yet common mediators of disease are the interactions that take place between the insulin-like growth factor (IGF) system and the extracellular matrix (ECM). Our laboratory has previously demonstrated that multiprotein insulin-like growth factor-I (IGF-I): insulin-like growth factor binding protein (IGFBP): vitronectin (VN) complexes stimulate migration of breast cancer cells in vitro, via the cooperative involvement of the insulin-like growth factor type I receptor (IGF-IR) and VN-binding integrins. However, the effects of IGF and ECM protein interactions on the dissemination and progression of breast cancer in vivo are unknown. It was hypothesised that interactions between proteins required for IGF induced signalling events and those within the ECM contribute to breast cancer metastasis and are prognostic and predictive indicators of patient outcome. To address this hypothesis, semiquantitative immunohistochemistry (IHC) analyses were performed to compare the extracellular and subcellular distribution of IGF and ECM induced signalling proteins between matched normal, primary cancer, and metastatic cancer among archival formalin-fixed paraffin-embedded (FFPE) breast tissue samples collected from women attending the Princess Alexandra Hospital, Brisbane. Multivariate Cox proportional hazards (PH) regression survival models in conjunction with a modified „purposeful selection of covariates. method were applied to determine the prognostic potential of these proteins. This study provides the first in-depth, compartmentalised analysis of the distribution of IGF and ECM induced signalling proteins. As protein function and protein localisation are closely correlated, these findings provide novel insights into IGF signalling and ECM protein function during breast cancer development and progression. Distinct IGF signalling and ECM protein immunoreactivity was observed in the stroma and/or in subcellular locations in normal breast, primary cancer and metastatic cancer tissues. Analysis of the presence and location of stratifin (SFN) suggested a causal relationship in ECM remodelling events during breast cancer development and progression. The results of this study have also suggested that fibronectin (FN) and ¥â1 integrin are important for the formation of invadopodia and epithelial-to-mesenchymal transition (EMT) events. Our data also highlighted the importance of the temporal and spatial distribution of IGF induced signalling proteins in breast cancer metastasis; in particular, SFN, enhancer-of-split and hairy-related protein 2 (SHARP-2), total-akt/protein kinase B 1 (Total-AKT1), phosphorylated-akt/protein kinase B (P-AKT), extracellular signal-related kinase-1 and extracellular signal-related kinase-2 (ERK1/2) and phosphorylated-extracellular signal-related kinase-1 and extracellular signal-related kinase-2 (P-ERK1/2). Multivariate survival models were created from the immunohistochemical data. These models were found to fit well with these data with very high statistical confidence. Numerous prognostic confounding effects and effect modifications were identified among elements of the ECM and IGF signalling cascade and corroborate the survival models. This finding provides further evidence for the prognostic potential of IGF and ECM induced signalling proteins. In addition, the adjusted measures of associations obtained in this study have strengthened the validity and utility of the resulting models. The findings from this study provide insights into the biological interactions that occur during the development of breast tissue and contribute to disease progression. Importantly, these multivariate survival models could provide important prognostic and predictive indicators that assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy. The outcomes of this study further inform the development of new therapeutics to aid patient recovery. The findings from this study have widespread clinical application in the diagnosis of disease and prognosis of disease progression, and inform the most appropriate clinical management of individuals with breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The novel breast cancer metastasis modulator gene signal-induced proliferation-associated 1 (Sipa1) underlies the breast cancer metastasis efficiency modifier locus Mtes 1 and has been shown to influence mammary tumour metastatic efficiency in the mouse, with an ectopically expressing Sipa1 cell line developing 1.5 to 2 fold more surface pulmonary metastases. Sipa1 encodes a mitogen-inducible GTPase activating (GAP) protein for members of the Ras-related proteins; participates in cell adhesion and modulates mitogen-induced cell cycle progression. Germline SIPA1 SNPs showed association with positive lymph node metastasis and hormonal receptor status in a Caucasian cohort. We hypothesized that SIPA1 may also be correlated to breast carcinoma incidence as well as prognosis. Therefore, this study investigated the potential relationship of SIPA1 and human breast cancer incidence by a germline SNP genotype frequency association study in a case-control Caucasian cohort in Queensland, Australia. Methods The SNPs genotyped in this study were identified in a previous study and the genotyping assays were carried out using TaqMan SNP Genotyping Assays. The data were analysed with chi-square method and the Monte Carlo style CLUMP analysis program. Results Results indicated significance with SIPA1 SNP rs3741378; the CC genotype was more frequently observed in the breast cancer group compared to the disease-free control group, indicating the variant C allele was associated with increased breast cancer incidence. Conclusion This observation indicates SNP rs3741378 as a novel potential sporadic breast cancer predisposition SNP. While it showed association with hormonal receptor status in breast cancer group in a previous pilot study, this exonic missense SNP (Ser (S) to Phe (F)) changes a hydrophilic residue (S) to a hydrophobic residue (F) and may significantly alter the protein functions of SIPA1 in breast tumourgenesis. SIPA1 SNPs rs931127 (5' near gene), and rs746429 (synonymous (Ala (A) to Ala (A)), did not show significant associations with breast cancer incidence, yet were associated with lymph node metastasis in the previous study. This suggests that SIPA1 may be involved in different stages of breast carcinogenesis and since this study replicates a previous study of the associated SNP, it implicates variants of the SIPA1 gene as playing a potential role in breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have characterized the LCC15-MB cell line which was recently derived from a breast carcinoma metastasis resected from the femur of a 29-year-old woman. LCC15-MB cells are vimentin (VIM) positive, exhibit a stellate morphology in routine cell culture, and form penetrating colonies when embedded in three-dimensional gels of Matrigel or fibrillar collagen. They show high levels of activity in the Boyden chamber chemomigration and chemoinvasion assays, and like other invasive human breast cancer (HBC) cell lines, LCC15-MB cells activate matrix-metalloproteinase-2 in response to treatment with concanavalin A. In addition, these cells are tumorigenic when implanted subcutaneously in nude mice and recolonize bone after arterial injection. Interestingly, both the primary lesion and the bone metastasis from which LCC15-MB were derived, as well as the resultant cell line, abundantly express the bone matrix protein osteopontin (OPN). OPN is also expressed by the highly metastatic MDA-MB-435 cells, but not other invasive or noninvasive HBC cell lines. Expression of OPN is retained in the subcutaneous xenograft and intraosseous metastases of LCC15-MB as detected by immunohistochemistry. Both VIM and OPN expression have been associated with breast cancer invasion and metastasis, and their expression by the LCC15-MB cell line is consistent with its derivation from a highly aggressive breast cancer. These cells provide a useful model for studying molecular mechanisms important for breast cancer metastasis to bone and, in particular, the implication(s) of OPN and VIM expression in this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to activate pro-matrix metalloproteinase (pro-MMP)-2 via membrane type-MMP is a hallmark of human breast cancer cell lines that show increased invasiveness, suggesting that MMP-2 contributes to human breast cancer progression. To investigate this, we have stably transfected pro-MMP-2 into the human breast cancer cell line MDA-MB-231, which lacks MMP-2 expression but does express its cell surface activator, membrane type 1-MMP. Multiple clones were derived and shown to produce pro-MMP-2 and to activate it in response to concanavalin A. In vitro analysis showed that the pro-MMP-2-transfected clones exhibited an increased invasive potential in Boyden chamber and Matrigel outgrowth assays, compared with the parental cells or those transfected with vector only. When inoculated into the mammary fat pad of nude mice, each of the MMP-2-tranfected clones grew faster than each of the vector controls tested. After intracardiac inoculation into nude mice, pro-MMP-2-transfected clones showed a significant increase in the incidence of metastasis to brain, liver, bone, and kidney compared with the vector control clones but not lung. Increased tumor burden was seen in the primary site and in lung metastases, and a trend toward increased burden was seen in bone, however, no change was seen in brain, liver, or kidney. This data supports a role for MMP-2 in breast cancer progression, both in the growth of primary tumors and in their spread to distant organs. MMP-2 may be a useful target for breast cancer therapy when refinement of MMP inhibitors provides for MMP-specific agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone is a common metastatic site in human breast cancer (HBC). Since bone metastasis occurs very rarely from current spontaneous or experimental metastasis models of HBC cells in nude mice, an arterial seeding model involving the direct injection of the cells into the left ventricle has been developed to better understand the mechanisms involved in this process. We present here a sensitive polymerase chain reaction (PCR) method to detect and quantitate bone and soft organ metastasis in nude mice which have been intracardially inoculated with Lac Z transduced HBC cells. Amplification of genomically incorporated Lac Z sequences in MDA-MB-231-BAG HBC cells enables us to specifically detect these cells in mouse organs and bones. We have also created a competitive template to use as an internal standard in the PCR reactions, allowing us to better quantitate levels of HBC metastasis. The results of this PCR detection method correlate well with cell culture detection from alternate long bones from the same mice, and are more sensitive than gross Lac Z staining with X-gal or routine histology. Comparable qualitative results were obtained with PCR and culture in a titration experiment in which mice were inoculated with increasing numbers of cells, but PCR is more quantifiable, less time consuming, and less expensive. This assay can be employed to study the molecular and cellular aspects of bone metastasis, and could easily be used in conjunction with RT-PCR-based analyses of gene products which may be involved with HBC metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The LCC15-MB cell line was established from a femoral bone metastasis that arose in a 29-year-old woman initially diagnosed with an infiltrating ductal mammary adenocarcinoma. The tumor had a relatively high (8%) S-phase fraction and 1/23 positive lymph nodes (LN). Both the primary tumor and LN metastasis were positive for estrogen receptor (ER) and progesterone receptor (PgR), but lacked erbB2 expression. Approximately one year later, the patient presented with a 0.8 cm comedo-type intraductal mammary adenocarcinoma in the left breast that was negative for ER and PgR, but positive for erbB2. Thirty-five months after the initial diagnosis she was treated for acute skeletal metastasis, and stabilized with a hip replacement. At this time, tumor cells were removed from surplus involved bone, inoculated into cell culture, and developed into the LCC15-MB cell line. The bone metastasis was a poorly differentiated adenocarcinoma lacking ER, PgR, and erbB2, characteristics shared by the LCC15-MB cells, although ER can be re-expressed by treatment of the LCC15-MB cells for 5 days with 75 μM 5-aza-2'-deoxycytidine. The LCC15-MB cell line is tumorigenic when implanted subcutaneously in NCr nu/nu mice and produces long-bone metastases after intracardiac injection. Although the bone metastasis from which the LCC15-MB cell line was derived lacked vimentin (VIM) expression, the original primary tumor and lymph node metastasis were strongly VIM positive, as are LCC15-MB cells in vitro and in nude mice. The karyotype and isozyme profiles of LCC15-MB cells are consistent with its origin from a human female, with most chromosome counts in the hypertriploid range. Thirty-two marker chromosomes are present. These cells provide an in vitro/in vivo model in which to study the inter-relationships between ER, VIM, and bone metastasis in human breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of human cancer cell lines have been described as being invasive and metastatic in immune incompetent animals. However, it is difficult to assess metastatic spread of a subcutaneously injected or inoculated cell line, since an exact detection of all microfoci of human tumour cells in the animals by usual histological procedures would require extensive sectioning of the whole animal. To overcome this problem, we transduced human breast cancer cells with a replication-defective Moloney murine leukaemia retroviral vector (M-MuLV) containing both neo(R) (neomycin resistance) and lacZ genes. The resulting cell lines were selected for antibiotic (G418) resistance, and cell-sorted for lacZ expression. lacZ continued to be expressed in cultured cells for at least 20 passages without further G418 selection. The lacE gene codes for β-D-galactosidase, and cells expressing this gene stain blue with the chromogenic substrate X-gal. The lacZ-expressing cells retained the pre-transduction ability to traverse Matrigel in vitro, to form subcutaneous tumours in nude mice, and to grow invasively with the formation of metastases. X-gal staining showed high specificity, staining the tumour cells but not the surrounding mouse tissue on either whole tissue blocks or histological sections. The staining procedure was highly sensitive, allowing detection of microfoci of human cancer cells, and quantitative estimation of the metastatic capacity of the cells. These results indicate that lacZ transduction of human tumour cells is a powerful means of studying human cancer cell invasion and metastases in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone metastasis is a complication that occurs in 80 % of women with advanced breast cancer. Despite the prevalence of bone metastatic disease, the avenues for its clinical management are still restricted to palliative treatment options. In fact, the underlying mechanisms of breast cancer osteotropism have not yet been fully elucidated due to a lack of suitable in vivo models that are able to recapitulate the human disease. In this work, we review the current transplantation-based models to investigate breast cancer-induced bone metastasis and delineate the strengths and limitations of the use of different grafting techniques, tissue sources, and hosts. We further show that humanized xenograft models incorporating human cells or tissue grafts at the primary tumor site or the metastatic site mimic more closely the human disease. Tissue-engineered constructs are emerging as a reproducible alternative to recapitulate functional humanized tissues in these murine models. The development of advanced humanized animal models may provide better platforms to investigate the mutual interactions between human cancer cells and their microenvironment and ultimately improve the translation of preclinical drug trials to the clinic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are small non-coding RNAs of 20 nt in length that are capable of modulating gene expression post-transcriptionally. Although miRNAs have been implicated in cancer, including breast cancer, the regulation of miRNA transcription and the role of defects in this process in cancer is not well understood. In this study we have mapped the promoters of 93 breast cancer-associated miRNAs, and then looked for associations between DNA methylation of 15 of these promoters and miRNA expression in breast cancer cells. The miRNA promoters with clearest association between DNA methylation and expression included a previously described and a novel promoter of the Hsa-mir-200b cluster. The novel promoter of the Hsa-mir-200b cluster, denoted P2, is located 2 kb upstream of the 5′ stemloop and maps within a CpG island. P2 has comparable promoter activity to the previously reported promoter (P1), and is able to drive the expression of miR-200b in its endogenous genomic context. DNA methylation of both P1 and P2 was inversely associated with miR-200b expression in eight out of nine breast cancer cell lines, and in vitro methylation of both promoters repressed their activity in reporter assays. In clinical samples, P1 and P2 were differentially methylated with methylation inversely associated with miR-200b expression. P1 was hypermethylated in metastatic lymph nodes compared with matched primary breast tumours whereas P2 hypermethylation was associated with loss of either oestrogen receptor or progesterone receptor. Hypomethylation of P2 was associated with gain of HER2 and androgen receptor expression. These data suggest an association between miR-200b regulation and breast cancer subtype and a potential use of DNA methylation of miRNA promoters as a component of a suite of breast cancer biomarkers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to chemotherapy and metastases are the major causes of breast cancer-related mortality. Moreover, cancer stem cells (CSC) play critical roles in cancer progression and treatment resistance. Previously, it was found that CSC-like cells can be generated by aberrant activation of epithelial–mesenchymal transition (EMT), thereby making anti-EMT strategies a novel therapeutic option for treatment of aggressive breast cancers. Here, we report that the transcription factor FOXC2 induced in response to multiple EMT signaling pathways as well as elevated in stem cell-enriched factions is a critical determinant of mesenchymal and stem cell properties, in cells induced to undergo EMT- and CSC-enriched breast cancer cell lines. More specifically, attenuation of FOXC2 expression using lentiviral short hairpin RNA led to inhibition of the mesenchymal phenotype and associated invasive and stem cell properties, which included reduced mammosphere-forming ability and tumor initiation. Whereas, overexpression of FOXC2 was sufficient to induce CSC properties and spontaneous metastasis in transformed human mammary epithelial cells. Furthermore, a FOXC2-induced gene expression signature was enriched in the claudin-low/basal B breast tumor subtype that contains EMT and CSC features. Having identified PDGFR-β to be regulated by FOXC2, we show that the U.S. Food and Drug Administration-approved PDGFR inhibitor, sunitinib, targets FOXC2-expressing tumor cells leading to reduced CSC and metastatic properties. Thus, FOXC2 or its associated gene expression program may provide an effective target for anti-EMT-based therapies for the treatment of claudin-low/basal B breast tumors or other EMT-/CSC-enriched tumors.