53 resultados para Brake Fade.
em Queensland University of Technology - ePrints Archive
Resumo:
Track defects cause profound effects to the stability of railway wagons; normally such problems are modeled for cases of wagons running at constant speed. Brake/traction torque adversely affect the wheel-rail contact characteristics but they are not explicitly considered in most of the wagon-track interaction simulation packages. This research developed a program that can simulate the longitudinal behaviour of railway wagon dynamics under the actions of braking or traction torques. This paper describes the mathematical formulation of modelling of a full wagon system using a fixed coordinate reference system. The effect of both the lateral and the vertical track geometry defects to the dynamics of wagons is reported; sensitivity of traction/brake state is analysed through a series of numerical examples.
Resumo:
Investigates the braking performance requirements of the UltraCommuter, a lightweight series hybrid electric vehicle currently under development at the University of Queensland. With a predicted vehicle mass of 600 kg and two in-wheel motors each capable of 500 Nm of peak torque, decelerations up to 0.46 g are theoretically possible using purely regenerative braking. With 99% of braking demands less than 0.35 g, essentially all braking can be regenerative. The wheel motors have sufficient peak torque capability to lock the rear wheels in combination with front axle braking, eliminating the need for friction braking at the rear. Emergency braking levels approaching 1 g are achieved by supplementation with front disk brakes. This paper presents equations describing the peak front and rear axle braking forces which occur under straight line braking, including gradients. Conventionally, to guarantee stability, mechanical front/rear proportioning of braking effort ensures that the front axle locks first. In this application, all braking is initially regenerative at the rear, and an adaptive ''by-wire'' proportioning system presented ensures this stability requirement is still satisfied. Front wheel drive and all wheel drive systems are also discussed. Finally, peak and continuous performance measures, not commonly provided for friction brakes, are derived for the UltraCommuter's motor capability and range of operation.
Resumo:
The BRAKE Driver Awareness Program provides evidence-based behaviour, risk, attitude and knowledge education for young drivers. BRAKE was founded during 2006 by Queensland Police Sergeant Rob Duncan and has been delivered to more than 35,000 senior secondary students since 2007. BRAKE is a participant directed program supported by resources provided at no cost. It includes eight parts able to be delivered in different configurations. BRAKE is endorsed by the Queensland Police and Queensland Ambulance Services. It is recognised by the Queensland Studies Authority as a Queensland Certificate of Education registered life skills course. This session is a must attend for secondary teachers, coordinators, staff in senior leadership positions and other stakeholders seeking a unique approach to adolescent road safety education. It will conclude with an opportunity to consider how BRAKE can be integrated into the senior secondary Health Education curriculum or pastoral care, social action and personal development programs.
Resumo:
A bicycle ergometer is a scientific device used by exercise physiologists which attempts to mimic on-road cycling characteristics such as foot technique, EMG activity, VO2, VCO2 and rider cardiology in a laboratory environment. Presently there are no known useful scientific ergometers that mimic these characteristics and are able to provide a satisfactory controlled resistance that is independent of speed. Previous research has suggested the use of a Magneto-Rheological (MR) Fluid as part of the ergometer design, as when used in a rotary brake application it is able to be controlled electronically to increase resistance instantly and independent of speed. In the target application, MR fluids are subject to immense tribological wear and temperature during viscous shearing, and will eventually show some degree of deterioration which is usually manifested as an increase in off-state viscosity. It is not known exactly how the fluid fails, however the amount of deterioration is related to the shear rate, temperature and duration and directly related to the power dissipation. Currently, there is very little literature that investigates the flow and thermal characteristics of MR fluid tribology using CFD. In this paper, we present initial work that aims to improve understanding of MR fluid wear via CFD modelling using Fluent, and results from the model are compared with those obtained from a experimental test rig of an MR fluid-based bicycle ergometer.
Resumo:
A low-cost test bed was made from a modified heavy vehicle (HV) brake tester. By rotating a test HV’s wheel on an eccentric roller, a known vibration was imparted to the wheel under test. A control case for dampers in good condition was compared with two test cases of ineffective shock absorbers. Measurement of the forces at the bearings of the roller provided an indication of the HV wheel-forces. Where the level of serviceability of the shock absorbers varied, differences in wheel load provided a quality indicator corresponding to a change of damper characteristic. Conclusions regarding the levels of damper maintenance beyond which HV suspensions cause road damage and dynamic wheel forces at the threshold of tyre wear at which HV shock absorbers are normally replaced are presented.
Resumo:
An estimated 200 Queensland children under 5 years of age are injured every year in incidents involving prams or strollers. The majority of injuries are due to falls from or falls with the pram or stroller Nineteen children were identified as having been caught in the pram or stroller mechanism (13 sustained finger injuries). Stairs and escalators were a factor in nearly 10 percent of pram or stroller fall injuries, with children being tipped out of the pram or stroller, or rolling down the stairs in the device. Roll away injuries accounted for eight percent of all pram or stroller fall injuries (some also involving stairs) Roll away injuries could be prevented by a default brake system similar to airport trolleys. Pram or stroller failure was identified in 2% of injuries
Resumo:
OBJECTIVES: To quantify the driving difficulties of older adults using a detailed assessment of driving performance and to link this with self-reported retrospective and prospective crashes. DESIGN: Prospective cohort study. SETTING: On-road driving assessment. PARTICIPANTS: Two hundred sixty-seven community-living adults aged 70 to 88 randomly recruited through the electoral roll. MEASUREMENTS: Performance on a standardized measure of driving performance. RESULTS: Lane positioning, approach, and blind spot monitoring were the most common error types, and errors occurred most frequently in situations involving merging and maneuvering. Drivers reporting more retrospective or prospective crashes made significantly more driving errors. Driver instructor interventions during self-navigation (where the instructor had to brake or take control of the steering to avoid an accident) were significantly associated with higher retrospective and prospective crashes; every instructor intervention almost doubled prospective crash risk. CONCLUSION: These findings suggest that on-road driving assessment provides useful information on older driver difficulties, with the self-directed component providing the most valuable information.
Resumo:
Purpose: To investigate whether wearing different presbyopic vision corrections alters the pattern of eye and head movements when viewing and responding to driving-related traffic scenes. Methods: Participants included 20 presbyopes (mean age: 56.1 ± 5.7 years) who had no experience of wearing presbyopic vision corrections, apart from single vision (SV) reading spectacles. Each participant wore five different vision corrections: distance SV lenses, progressive addition spectacle lenses (PAL), bifocal spectacle lenses (BIF), monovision (MV) and multifocal contact lenses (MTF CL). For each visual condition, participants were required to view videotape recordings of traffic scenes, track a reference vehicle, and identify a series of peripherally presented targets. Digital numerical display panels were also included as near visual stimuli (simulating the visual displays of a vehicle speedometer and radio). Eye and head movements were measured, and the accuracy of target recognition was also recorded. Results: The path length of eye movements while viewing and responding to driving-related traffic scenes was significantly longer when wearing BIF and PAL than MV and MTF CL (both p ≤ 0.013). The path length of head movements was greater with SV, BIF, and PAL than MV and MTF CL (all p < 0.001). Target recognition and brake response times were not significantly affected by vision correction, whereas target recognition was less accurate when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze (p = 0.008), regardless of vision correction. Conclusions: Different presbyopic vision corrections alter eye and head movement patterns. The longer path length of eye and head movements and greater number of saccades associated with the spectacle presbyopic corrections may affect some aspects of driving performance.
Resumo:
Purpose: To evaluate the on-road driving performance of persons with homonymous hemianopia or quadrantanopia in comparison to age-matched controls with normal visual fields. Methods: Participants were 22 hemianopes and eight quadrantanopes (mean age 53 years) and 30 persons with normal visual fields (mean age 52 years) and were either current drivers or aiming to resume driving. All participants completed a battery of tests of vision (ETDRS visual acuity, Pelli-Robson letter contrast sensitivity, Humphrey visual fields), cognitive tests (trials A and B, Mini Mental State Examination, Digit Symbol Substitution) and an on-road driving assessment. Driving performance was assessed in a dual-brake vehicle with safety monitored by a certified driving rehabilitation specialist. Backseat evaluators masked to the clinical characteristics of participants independently rated driving performance along a 22.7 kilometre route involving urban and interstate driving. Results: Seventy-three per cent of the hemianopes, 88 per cent of quadrantanopes and all of the drivers with normal fields received safe driving ratings. Those hemianopic and quadrantanopic drivers rated as unsafe tended to have problems with maintaining appropriate lane position, steering steadiness and gap judgment compared to controls. Unsafe driving was associated with slower visual processing speed and impairments in contrast sensitivity, visual field sensitivity and executive function. Conclusions: Our findings suggest that some drivers with hemianopia or quadrantanopia are capable of safe driving performance, when compared to those of the same age with normal visual fields. This finding has important implications for the assessment of fitness to drive in this population.
Resumo:
Purpose: To compare the eye and head movements and lane-keeping of drivers with hemianopia and quadrantanopia with that of age-matched controls when driving under real world conditions. Methods: Participants included 22 hemianopes and 8 quadrantanopes (M age 53 yrs) and 30 persons with normal visual fields (M age 52 yrs) who were ≥ 6 months from the brain injury date and either a current driver or aiming to resume driving. All participants drove an instrumented dual-brake vehicle along a 14-mile route in traffic that included non-interstate city driving and interstate driving. Driving performance was scored using a standardised assessment system by two “backseat” raters and the Vigil Vanguard system which provides objective measures of speed, braking and acceleration, cornering, and video-based footage from which eye and head movements and lane-keeping can be derived. Results: As compared to drivers with normal visual fields, drivers with hemianopia or quadrantanopia on average were significantly more likely to drive slower, to exhibit less excessive cornering forces or acceleration, and to execute more shoulder movements off the seat. Those hemianopic and quadrantanopic drivers rated as safe to drive by the backseat evaluator made significantly more excursive eye movements, exhibited more stable lane positioning, less sudden braking events and drove at higher speeds than those rated as unsafe, while there was no difference between safe and unsafe drivers in head movements. Conclusions: Persons with hemianopic and quadrantanopic field defects rated as safe to drive have different driving characteristics compared to those rated as unsafe when assessed using objective measures of driving performance.
Resumo:
CRE (Corporate Real Estate) decisions should not simply deal with the management of individual facilities, but should especially be concerned with the relationships that a facility has with the corporate business strategy and with the larger real estate markets. Both the practice and the research of CRE management have historically tended to emphasize real estate issues and ignore the corporation’s business issues, causing real estate strategies to be disconnected from the goal and priorities of the corporation’s senior management. With regard to office cycles, a large number of econometric models have been proposed during the last 20 years. However, evidence from historical data and previous research in the field of real estate forecasting seem to agree only on one thing: the existence of interconnected property cycles that are concentrated on vacancy rates (demand). Vacancy also represents the linkage between the inadequacy of existing CRE strategies and the inability of existing econometric models to correctly forecast office rent cycles. Business cycles, across different industry sectors, have decreased from 5-7 years to 1-3 years today, yet corporations are still entering into leases of 5-10 years, causing hidden vacancy levels to rise. Possibly, once CRE strategies are totally in tune with the overall business, hidden vacancy will fade away providing forecasters with better quality data. The aim of this paper is not to investigate whether and when the supply-side will eventually evolve to provide flexible occupancy arrangements to accommodate corporate agility requirements, but rather to propose a general framework for corporations to improve the decision making process of their CRE executives, while emphasizing the importance of understanding the context as a precondition to effective real estate involvements.
Resumo:
Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.
Resumo:
It is well known that track defects cause profound effects to the dynamics of railway wagons; normally such problems are examined for cases of wagons running at a constant speed. Brake/traction torques affect the speed profile due to the wheel–rail contact characteristics but most of the wagon–track interaction models do not explicitly consider them in simulation. The authors have recently published a model for the dynamics of wagons subject to braking traction torques on a perfect track by explicitly considering the pitch degree of freedom for wheelsets. The model is extended for cases of lateral and vertical track geometry defects and worn railhead and wheel profiles. This paper presents the results of the analyses carried out using the model extended to the dynamics of wagons containing less ideal wheel profiles running on tracks with geometry defects and worn rails.
Resumo:
Recently, many new applications in engineering and science are governed by a series of fractional partial differential equations (FPDEs). Unlike the normal partial differential equations (PDEs), the differential order in a FPDE is with a fractional order, which will lead to new challenges for numerical simulation, because most existing numerical simulation techniques are developed for the PDE with an integer differential order. The current dominant numerical method for FPDEs is Finite Difference Method (FDM), which is usually difficult to handle a complex problem domain, and also hard to use irregular nodal distribution. This paper aims to develop an implicit meshless approach based on the moving least squares (MLS) approximation for numerical simulation of fractional advection-diffusion equations (FADE), which is a typical FPDE. The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless strong-forms. The stability and convergence related to the time discretization of this approach are then discussed and theoretically proven. Several numerical examples with different problem domains and different nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the FADE.