428 resultados para Boundary Inhomogeneity Method

em Queensland University of Technology - ePrints Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a method of separating variables is effectively implemented for solving a time-fractional telegraph equation (TFTE) in two and three dimensions. We discuss and derive the analytical solution of the TFTE in two and three dimensions with nonhomogeneous Dirichlet boundary condition. This method can be extended to other kinds of the boundary conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aiming at the large scale numerical simulation of particle reinforced materials, the concept of local Eshelby matrix has been introduced into the computational model of the eigenstrain boundary integral equation (BIE) to solve the problem of interactions among particles. The local Eshelby matrix can be considered as an extension of the concepts of Eshelby tensor and the equivalent inclusion in numerical form. Taking the subdomain boundary element method as the control, three-dimensional stress analyses are carried out for some ellipsoidal particles in full space with the proposed computational model. Through the numerical examples, it is verified not only the correctness and feasibility but also the high efficiency of the present model with the corresponding solution procedure, showing the potential of solving the problem of large scale numerical simulation of particle reinforced materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents a promising boundary setting method for solving challenging issues in text classification to produce an effective text classifier. A classifier must identify boundary between classes optimally. However, after the features are selected, the boundary is still unclear with regard to mixed positive and negative documents. A classifier combination method to boost effectiveness of the classification model is also presented. The experiments carried out in the study demonstrate that the proposed classifier is promising.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Free surface flows of a rotational fluid past a two-dimensional semi-infinite body are considered. The fluid is assumed to be inviscid, incompressible, and of finite depth. A boundary integral method is used to solve the problem for the case where the free surface meets the body at a stagnation point. Supercritical solutions which satisfy the radiation condition are found for various values of the Froude number and the dimensionless vorticity. Subcritical solutions are also found; however these solutions violate the radiation condition and are characterized by a train of waves upstream. It is shown numerically that the amplitude of these waves increases as each of the Froude number, vorticity and height of the body above the bottom increases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The free surface flow of a finite depth fluid past a semi-infinite body is considered. The fluid is assumed to have constant vorticity throughout and the free surface is assumed to attach smoothly to the front face of the body. Numerical solutions are found using a boundary integral method in the physical plane and it is shown that solutions exist for all supercritical Froude numbers. The related problem of the cusp-like flow due to a submerged sink in a corner is also considered. Vorticity is included in the flow and it is shown that the behaviour of the solutions is qualitatively the same as that found in the problem described above.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Saffman-Taylor finger problem is to predict the shape and,in particular, width of a finger of fluid travelling in a Hele-Shaw cell filled with a different, more viscous fluid. In experiments the width is dependent on the speed of propagation of the finger, tending to half the total cell width as the speed increases. To predict this result mathematically, nonlinear effects on the fluid interface must be considered; usually surface tension is included for this purpose. This makes the mathematical problem suffciently diffcult that asymptotic or numerical methods must be used. In this paper we adapt numerical methods used to solve the Saffman-Taylor finger problem with surface tension to instead include the effect of kinetic undercooling, a regularisation effect important in Stefan melting-freezing problems, for which Hele-Shaw flow serves as a leading order approximation when the specific heat of a substance is much smaller than its latent heat. We find the existence of a solution branch where the finger width tends to zero as the propagation speed increases, disagreeing with some aspects of the asymptotic analysis of the same problem. We also find a second solution branch, supporting the idea of a countably infinite number of branches as with the surface tension problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Free surface flow past a two-dimensional semi-infinite curved plate is considered, with emphasis given to solving for the shape of the resulting wave train that appears downstream on the surface of the fluid. This flow configuration can be interpreted as applying near the stern of a wide blunt ship. For steady flow in a fluid of finite depth, we apply the Wiener-Hopf technique to solve a linearised problem, valid for small perturbations of the uniform stream. Weakly nonlinear results found using a forced KdV equation are also presented, as are numerical solutions to the fully nonlinear problem, computed using a conformal mapping and a boundary integral technique. By considering different families of shapes for the semi-infinite plate, it is shown how the amplitude of the waves can be minimised. For plates that increase in height as a function of the direction of flow, reach a local maximum, and then point slightly downwards at the point at which the free surface detaches, it appears the downstream wavetrain can be eliminated entirely.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a three-dimensional numerical analysis of the electromagnetic forces within a high voltage superconducting Fault Current Limiter (FCL) with a saturated core under short-circuit conditions. The effects of electrodynamics forces in power transformer coils under short-circuit conditions have been reported widely. However, the coil arrangement in an FCL with saturated core differs significantly from existing reactive devices. The boundary element method is employed to perform an electromagnetic force analysis on an FCL. The analysis focuses on axial and radial forces of the AC coil. The results are compared to those of a power transformer and important design considerations are highlighted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development and design of electric high power devices with electromagnetic computer-aided engineering (EM-CAE) software such as the Finite Element Method (FEM) and Boundary Element Method (BEM) has been widely adopted. This paper presents the analysis of a Fault Current Limiter (FCL), which acts as a high-voltage surge protector for power grids. A prototype FCL was built. The magnetic flux in the core and the resulting electromagnetic forces in the winding of the FCL were analyzed using both FEM and BEM. An experiment on the prototype was conducted in a laboratory. The data obtained from the experiment is compared to the numerical solutions to determine the suitability and accuracy of the two methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An efficient numerical method to compute nonlinear solutions for two-dimensional steady free-surface flow over an arbitrary channel bottom topography is presented. The approach is based on a boundary integral equation technique which is similar to that of Vanden-Broeck's (1996, J. Fluid Mech., 330, 339-347). The typical approach for this problem is to prescribe the shape of the channel bottom topography, with the free-surface being provided as part of the solution. Here we take an inverse approach and prescribe the shape of the free-surface a priori while solving for the corresponding bottom topography. We show how this inverse approach is particularly useful when studying topographies that give rise to wave-free solutions, allowing us to easily classify eleven basic flow types. Finally, the inverse approach is also adapted to calculate a distribution of pressure on the free-surface, given the free-surface shape itself.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonlinear problem of steady free-surface flow past a submerged source is considered as a case study for three-dimensional ship wave problems. Of particular interest is the distinctive wedge-shaped wave pattern that forms on the surface of the fluid. By reformulating the governing equations with a standard boundary-integral method, we derive a system of nonlinear algebraic equations that enforce a singular integro-differential equation at each midpoint on a two-dimensional mesh. Our contribution is to solve the system of equations with a Jacobian-free Newton-Krylov method together with a banded preconditioner that is carefully constructed with entries taken from the Jacobian of the linearised problem. Further, we are able to utilise graphics processing unit acceleration to significantly increase the grid refinement and decrease the run-time of our solutions in comparison to schemes that are presently employed in the literature. Our approach provides opportunities to explore the nonlinear features of three-dimensional ship wave patterns, such as the shape of steep waves close to their limiting configuration, in a manner that has been possible in the two-dimensional analogue for some time.