71 resultados para Bound Entanglement
em Queensland University of Technology - ePrints Archive
Resumo:
We surveyed 506 Australian high school students on career development (exploration, planning, job-knowledge, decision-making, indecision), personal functioning (well-being, self-esteem, life satisfaction, school satisfaction) and control variables (parents’ education, school achievement), and tested differences among work-bound, college-bound and university-bound students. The work-bound students had the poorest career development and personal functioning, the university-bound students the highest, with the college-bound students falling in-between the other two groups. Work-bound students did poorest, even after controlling for parental education and school achievement. The results suggest a relationship between career development and personal functioning in high school students.
Resumo:
We demonstrate a modification of the algorithm of Dani et al for the online linear optimization problem in the bandit setting, which allows us to achieve an O( \sqrt{T ln T} ) regret bound in high probability against an adaptive adversary, as opposed to the in expectation result against an oblivious adversary of Dani et al. We obtain the same dependence on the dimension as that exhibited by Dani et al. The results of this paper rest firmly on those of Dani et al and the remarkable technique of Auer et al for obtaining high-probability bounds via optimistic estimates. This paper answers an open question: it eliminates the gap between the high-probability bounds obtained in the full-information vs bandit settings.
Resumo:
Modelling how a word is activated in human memory is an important requirement for determining the probability of recall of a word in an extra-list cueing experiment. The spreading activation, spooky-action-at-a-distance and entanglement models have all been used to model the activation of a word. Recently a hypothesis was put forward that the mean activation levels of the respective models are as follows: Spreading � Entanglment � Spooking-action-at-a-distance This article investigates this hypothesis by means of a substantial empirical analysis of each model using the University of South Florida word association, rhyme and word norms.
Resumo:
Most learning paradigms impose a particular syntax on the class of concepts to be learned; the chosen syntax can dramatically affect whether the class is learnable or not. For classification paradigms, where the task is to determine whether the underlying world does or does not have a particular property, how that property is represented has no implication on the power of a classifier that just outputs 1’s or 0’s. But is it possible to give a canonical syntactic representation of the class of concepts that are classifiable according to the particular criteria of a given paradigm? We provide a positive answer to this question for classification in the limit paradigms in a logical setting, with ordinal mind change bounds as a measure of complexity. The syntactic characterization that emerges enables to derive that if a possibly noncomputable classifier can perform the task assigned to it by the paradigm, then a computable classifier can also perform the same task. The syntactic characterization is strongly related to the difference hierarchy over the class of open sets of some topological space; this space is naturally defined from the class of possible worlds and possible data of the learning paradigm.
Resumo:
This article augments Resource Dependence Theory with Real Options reasoning in order to explain time bounds specification in strategic alliances. Whereas prior work has found about a 50/50 split between alliances that are time bound and those that are open-ended, their substantive differences and antecedents are ill understood. To address this, we suggest that the two alliance modes present different real options trade-offs in adaptation to environmental uncertainty: ceteris paribus, time-bound alliances are likely to provide abandonment options over open-ended alliances, but require additional investments to extend the alliance when this turns out to be desirable after formation. Open-ended alliances are likely to provide growth options over open-ended alliances, but they demand additional effort to abandon the alliance if post-formation circumstances so desire. Therefore, we expect time bounds specification to be a function of environmental uncertainty: organizations in more uncertain environments will be relatively more likely to place time bounds on their strategic alliances. Longitudinal archival and survey data collected amongst 39 industry clusters provides empirical support for our claims, which contribute to the recent renaissance of resource dependence theory by specifying the conditions under which organizations choose different time windows in strategic partnering.
Resumo:
Free association norms indicate that words are organized into semantic/associative neighborhoods within a larger network of words and links that bind the net together. We present evidence indicating that memory for a recent word event can depend on implicitly and simultaneously activating related words in its neighborhood. Processing a word during encoding primes its network representation as a function of the density of the links in its neighborhood. Such priming increases recall and recognition and can have long lasting effects when the word is processed in working memory. Evidence for this phenomenon is reviewed in extralist cuing, primed free association, intralist cuing, and single-item recognition tasks. The findings also show that when a related word is presented to cue the recall of a studied word, the cue activates it in an array of related words that distract and reduce the probability of its selection. The activation of the semantic network produces priming benefits during encoding and search costs during retrieval. In extralist cuing recall is a negative function of cue-to-distracter strength and a positive function of neighborhood density, cue-to-target strength, and target-to cue strength. We show how four measures derived from the network can be combined and used to predict memory performance. These measures play different roles in different tasks indicating that the contribution of the semantic network varies with the context provided by the task. We evaluate spreading activation and quantum-like entanglement explanations for the priming effect produced by neighborhood density.
Resumo:
In Burrage and Burrage [1] it was shown that by introducing a very general formulation for stochastic Runge-Kutta methods, the previous strong order barrier of order one could be broken without having to use higher derivative terms. In particular, methods of strong order 1.5 were developed in which a Stratonovich integral of order one and one of order two were present in the formulation. In this present paper, general order results are proven about the maximum attainable strong order of these stochastic Runge-Kutta methods (SRKs) in terms of the order of the Stratonovich integrals appearing in the Runge-Kutta formulation. In particular, it will be shown that if an s-stage SRK contains Stratonovich integrals up to order p then the strong order of the SRK cannot exceed min{(p + 1)/2, (s - 1)/2), p greater than or equal to 2, s greater than or equal to 3 or 1 if p = 1.