38 resultados para Bottari, Giovanni Gaetano, 1689-1775.

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: In the global knowledge economy, investment in knowledge-intensive industries and information and communication technology (ICT) infrastructures are seen as significant factors in improving the overall socio-economic fabric of cities. Consequently knowledge-based urban development (KBUD) has become a new paradigm in urban planning and development, for increasing the welfare and competitiveness of cities and regions. The paper discusses the critical connections between KBUD strategies and knowledge-intensive industries and ICT infrastructures. In particular, it investigates the application of the knowledge-based urban development concept by discussing one of South East Asia’s large scale manifestations of KBUD; Malaysia’s Multimedia Super Corridor. ----- ----- Design/methodology/approach: The paper provides a review of the KBUD concept and develops a knowledge-based urban development assessment framework to provide a clearer understanding of development and evolution of KBUD manifestations. Subsequently the paper investigates the implementation of the KBUD concept within the Malaysian context, and particularly the Multimedia Super Corridor (MSC). ----- ----- Originality/value: The paper, with its KBUD assessment framework, scrutinises Malaysia’s experince; providing an overview of the MSC project and discussion of the case findings. The development and evolution of the MSC is viewed with regard to KBUD policy implementation, infrastructural implications, and the agencies involved in the development and management of the MSC. ----- ----- Practical implications: The emergence of the knowledge economy, together with the issues of globalisation and rapid urbanisation, have created an urgent need for urban planners to explore new ways of strategising planning and development that encompasses the needs and requirements of the knowledge economy and society. In light of the literature and MSC case findings, the paper provides generic recommendations, on the orchestration of knowledge-based urban development, for other cities and regions seeking to transform to the knowledge economy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot spot identification (HSID) plays a significant role in improving the safety of transportation networks. Numerous HSID methods have been proposed, developed, and evaluated in the literature. The vast majority of HSID methods reported and evaluated in the literature assume that crash data are complete, reliable, and accurate. Crash under-reporting, however, has long been recognized as a threat to the accuracy and completeness of historical traffic crash records. As a natural continuation of prior studies, the paper evaluates the influence that under-reported crashes exert on HSID methods. To conduct the evaluation, five groups of data gathered from Arizona Department of Transportation (ADOT) over the course of three years are adjusted to account for fifteen different assumed levels of under-reporting. Three identification methods are evaluated: simple ranking (SR), empirical Bayes (EB) and full Bayes (FB). Various threshold levels for establishing hotspots are explored. Finally, two evaluation criteria are compared across HSID methods. The results illustrate that the identification bias—the ability to correctly identify at risk sites--under-reporting is influenced by the degree of under-reporting. Comparatively speaking, crash under-reporting has the largest influence on the FB method and the least influence on the SR method. Additionally, the impact is positively related to the percentage of the under-reported PDO crashes and inversely related to the percentage of the under-reported injury crashes. This finding is significant because it reveals that despite PDO crashes being least severe and costly, they have the most significant influence on the accuracy of HSID.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Log-linear and maximum-margin models are two commonly-used methods in supervised machine learning, and are frequently used in structured prediction problems. Efficient learning of parameters in these models is therefore an important problem, and becomes a key factor when learning from very large data sets. This paper describes exponentiated gradient (EG) algorithms for training such models, where EG updates are applied to the convex dual of either the log-linear or max-margin objective function; the dual in both the log-linear and max-margin cases corresponds to minimizing a convex function with simplex constraints. We study both batch and online variants of the algorithm, and provide rates of convergence for both cases. In the max-margin case, O(1/ε) EG updates are required to reach a given accuracy ε in the dual; in contrast, for log-linear models only O(log(1/ε)) updates are required. For both the max-margin and log-linear cases, our bounds suggest that the online EG algorithm requires a factor of n less computation to reach a desired accuracy than the batch EG algorithm, where n is the number of training examples. Our experiments confirm that the online algorithms are much faster than the batch algorithms in practice. We describe how the EG updates factor in a convenient way for structured prediction problems, allowing the algorithms to be efficiently applied to problems such as sequence learning or natural language parsing. We perform extensive evaluation of the algorithms, comparing them to L-BFGS and stochastic gradient descent for log-linear models, and to SVM-Struct for max-margin models. The algorithms are applied to a multi-class problem as well as to a more complex large-scale parsing task. In all these settings, the EG algorithms presented here outperform the other methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims and objectives.  The aim of this study was to gain an understanding of the experiences and perspectives of intensive care nurses caring for critically ill obstetric patients. Background.  Current literature suggests critically ill obstetric patients need specialised, technically appropriate care to meet their specific needs with which many intensive care nurses are unfamiliar. Furthermore, there is little research and evidence to guide the care of this distinct patient group. Design.  This study used a descriptive qualitative design. Methods.  Two focus groups were used to collect data from 10 Australian intensive care units nurses in May 2007. Open-ended questions were used to guide the discussion. Latent content analysis was used to analyse the data set. Each interview lasted no longer than 60 minutes and was recorded using audio tape. The full interviews were transcribed prior to in-depth analysis to identify major themes. Results.  The themes identified from the focus group interviews were competence with knowledge and skills for managing obstetric patients in the intensive care unit, confidence in caring for obstetric patients admitted to the intensive care unit and acceptance of an expanded scope of practice perceived to include fundamental midwifery knowledge and skills. Conclusion.  The expressed lack of confidence and competence in meeting the obstetric and support needs of critically ill obstetric women indicates a clear need for greater assistance and education of intensive care nurses. This in turn may encourage critical care nurses to accept an expanded role of clinical practice in caring for critically ill obstetric patients. Relevance to clinical practice.  Recognition of the issues for nurses in successfully caring for obstetric patients admitted to an adult intensive care setting provides direction for designing education packages, ensuring specific carepaths and guidelines are in place and that support from a multidisciplinary team is available including midwifery staff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of Cellular Automata (CA) for musical purposes has a rich history. In general the mapping of CA states to note-level music representations has focused on pitch mapping and downplayed rhythm. This paper reports experiments in the application of one-dimensional cellular automata to the generation and evolution of rhythmic patterns. A selection of CA tendencies are identified that can be used as compositional tools to control the rhythmic coherence of monophonic passages and the polyphonic texture of musical works in broad-brush, rather than precisely deterministic, ways. This will provide the composer and researcher with a clearer understanding of the useful application of CAs for generative music.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – In the context of global knowledge economy, knowledge-based urban development (KBUD) is seen as an effective development strategy for city-regions to survive, flourish and become highly competitive urban agglomerations – i.e., a knowledge city-region. This paper aims to evaluate the KBUD dynamics, capacity and potentials of a rapidly emerging knowledge city-region of Finland – Tampere region. Design/methodology/approach – The paper undertakes a review of the literature on regional development in the knowledge economy era. It adopts a qualitative analysis technique to scrutinize the dynamics, capacity and potentials of Tampere region. The semi-structured interview process starts with the pre-determined key actors of the city-region with an aim of determining the other key players. Next, with the participation of all key players to the interviews, the research reveals the principal issues, assets and mechanisms that relate to KBUD, and portrays the strengths, weaknesses, opportunities and threats of the city-region. A critical analysis of the findings along with the previous studies is undertaken to provide a clear picture of the dynamics, capacity and potentials of the emerging knowledge city-region. Originality/value – This paper reports the findings of a pioneering study focusing on the investigation of the KBUD dynamics, capacity and potentials of Tampere region. The paper critically evaluates the city-region from the knowledge perspective with the lens of KBUD, and the lessons learned and the methodological approach of the paper shed light to other city-regions seeking such development. Practical implications – The paper discusses the findings of a study from Tampere region that critically scrutinizes the KBUD experience of the city-region. The research provides an invaluable opportunity to inform the regional decision-, policy- and plan-making mechanisms by determining key issues, actors, assets, processes and potential development directions for the KBUD of Tampere region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumours and ∼25% of high-grade endometrioid tumours had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor levels, and frequent TP53 mutations. Most endometrioid tumours had few copy number alterations or TP53 mutations, but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS and novel mutations in the SWI/SNF chromatin remodelling complex gene ARID5B. A subset of endometrioid tumours that we identified had a markedly increased transversion mutation frequency and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy-number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may affect post-surgical adjuvant treatment for women with aggressive tumours.