7 resultados para Boeing

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel technique was used to measure emission factors for commonly used commercial aircraft including a range of Boeing and Airbus airframes under real world conditions. Engine exhaust emission factors for particles in terms of particle number and mass (PM2.5), along with those for CO2, and NOx were measured for over 280 individual aircraft during the various modes of landing/takeoff (LTO) cycle. Results from this study show that particle number, and NOx emission factors are dependant on aircraft engine thrust level. Minimum and maximum emissions factors for particle number, PM2.5, and NOx emissions were found to be in the range of 4.16×1015-5.42×1016 kg-1, 0.03-0.72 g.kg-1, and 3.25-37.94 g.kg-1 respectively for all measured airframes and LTO cycle modes. Number size distributions of emitted particles for the naturally diluted aircraft plumes in each mode of LTO cycle showed that particles were predominantly in the range of 4 to 100 nm in diameter in all cases. In general, size distributions exhibit similar modality during all phases of the LTO cycle. A very distinct nucleation mode was observed in all particle size distributions, except for taxiing and landing of A320 aircraft. Accumulation modes were also observed in all particle size distributions. Analysis of aircraft engine emissions during LTO cycle showed that aircraft thrust level is considerably higher during taxiing than idling suggesting that International Civil Aviation Organization (ICAO) standards need to be modified as the thrust levels for taxi and idle are considered to be the same (7% of total thrust) [1].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we implemented six different boarding strategies (Wilma, Steffen, Reverse Pyramid, Random, Blocks and By letter) in order to minimize boarding time and turnaround time for Boeing 777 and Airbus 380 aircrafts by using Agent-based modelling approach. In the simulation, we divided passengers into six different categories which are group size more than 5 people, passengers with child, gold members, first class passengers, business class passengers and economy class passengers. Results from the simulation demonstrates Reverse Pyramid method is the best boarding method for Boeing 777 and Steffen method is the best boarding method for Airbus 380.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We implemented six different boarding strategies (Wilma, Steffen, Reverse Pyramid, Random, Blocks and By letter) in order to investigate boarding times for Boeing 777 and Airbus 380 aircraft. We also introduce three new boarding methods to find the optimum boarding strategy. Our models explicitly simulate the behaviour of groups of people travelling together and we explicitly simulate the timing to store their luggage as part of the boarding process. Results from the simulation demonstrates the Reverse Pyramid method is the best boarding method for Boeing 777, and the Steffen method is the best boarding method for Airbus 380. For the new suggested boarding methods, aisle first boarding method is the best boarding strategy for Boeing 777 and row arrangement method is the best boarding strategy for Airbus 380. Overall best boarding strategy is aisle first boarding method for Boeing 777 and Steffen method for Airbus 380.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passenger flow simulations are an important tool for designing and managing airports. This thesis examines the different boarding strategies for the Boeing 777 and Airbus 380 aircraft in order to investigate their current performance and to determine minimum boarding times. The most optimal strategies have been discovered and new strategies that are more efficient are proposed. The methods presented offer reduced aircraft boarding times which plays an important role for reducing the overall aircraft Turn Time for an airline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and approximately 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 x 10(-)(8)), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.