189 resultados para Blood Circulation.

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Until recently, the low-abundance (LA) range of the serum proteome was an unexplored reservoir of diagnostic information. Today it is increasingly appreciated that a diagnostic goldmine of LA biomarkers resides in the blood stream in complexed association with more abundant higher molecular weight carrier proteins such as albumin and immunoglobulins. As we now look to the possibility of harvesting these LA biomarkers more efficiently through engineered nano-scale particles, mathematical approaches are needed in order to reveal the mechanisms by which blood carrier proteins act as molecular 'mops' for LA diagnostic cargo, and the functional relationships between bound LA biomarker concentrations and other variables of interest such as biomarker intravasation and clearance rates and protein half-lives in the bloodstream. Here we show, by simple mathematical modeling, how the relative abundance of large carrier proteins and their longer half-lives in the bloodstream work together to amplify the total blood concentration of these tiny biomarkers. The analysis further suggests that alterations in the production of biomarkers lead to gradual rather than immediate changes in biomarker levels in the blood circulation. The model analysis also points to the characteristics of artificial nano-particles that would render them more efficient harvesters of tumor biomarkers in the circulation, opening up possibilities for the early detection of curable disease, rather than simply better detection of advanced disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The micro-circulation of blood plays an important role in human body by providing oxygen and nutrients to the cells and removing carbon dioxide and wastes from the cells. This process is greatly affected by the rheological properties of the Red Blood Cells (RBCs). Changes in the rheological properties of the RBCs are caused by certain human diseases such as malaria and sickle cell diseases. Therefore it is important to understand the motion and deformation mechanism of RBCs in order to diagnose and treat this kind of diseases. Although, many methods have been developed to explore the behavior of the RBCs in micro-channels, they could not explain the deformation mechanism of the RBCs properly. Recently developed Particle Methods are employed to explain the RBCs’ behavior in micro-channels more comprehensively. The main objective of this study is to critically analyze the present methods, used to model the RBC behavior in micro-channels, in order to develop a computationally efficient particle based model to describe the complete behavior of the RBCs in micro-channels accurately and comprehensively

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platelet-derived microparticles that are produced during platelet activation are capable of adhesion and aggregation. Endothelial trauma that occurs during percutaneous transluminal coronary angioplasty (PTCA) may support platelet-derived microparticle adhesion and contribute to development of restenosis. We have previously reported an increase in platelet-derived microparticles in peripheral arterial blood with angioplasty. This finding raised concerns regarding the role of plateletderived microparticles in restenosis, and therefore the aim of this study was to monitor levels in the coronary circulation. The study population consisted of 19 angioplasty patients. Paired coronary artery and sinus samples were obtained following heparinization, following contrast administration, and subsequent to all vessel manipulation. Platelet-derived microparticles were identified with an anti-CD61 (glycoprotein IIIa) fluorescence-conjugated antibody using flow cytometry. There was a significant decrease in arterial platelet-derived microparticles from heparinization to contrast administration (P 0.001), followed by a significant increase to the end of angioplasty (P 0.004). However, there was no significant change throughout the venous samples. These results indicate that the higher level of platelet-derived microparticles after angioplasty in arterial blood remained in the coronary circulation. Interestingly, levels of thrombin–antithrombin complexes did not rise during PTCA. This may have implications for the development of coronary restenosis post-PTCA, although this remains to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aim: Cardiotoxicity resulting in heart failure is a devastating complication of cancer therapy. It is possible that a patient may survive cancer only to develop heart failure (HF), which is more deadly than cancer. The aim of this project was to profile the characteristics of patients at risk of cancer treatment induced heart failure. Methods: Linked Health Data Analysis of Queensland Cancer Registry (QCR) from 1996-2009, Death Registry and Hospital Administration records for HF and chemotherapy admissions were reviewed. Index heart failure admission must have occurred after the date of cancer registry entry. Results: A total of 15,987 patients were included in this analysis; 1,062 (6.6%) had chemotherapy+HF admission (51.4% Female) and 14,925 (93.4%) chemotherapy_no HF admission. Median age of chemotherapy+HF patients was 67 years (IQR 58 to 75) vs. 54 years (IQR 44 to 64) for chemotherapy_no HF admission. Chemotherapy+HF patients had increased risk of all cause mortality (HR 2.79 [95% CI 2.58-3.02] and 1.67 [95% CI, 1.54 to 1.81] after adjusting for age, sex, marital status, country of birth, cancer site and chemotherapy dose). Index HF admission occurred within one year of cancer diagnosis in 47% of HF patients with 80% of patinets having there index admission with 3 years. The number of chemotherapy cycles was not associated with significant reduction in survival time in chemotherapy+HF patients. Mean survival for heart failure patients was 5.3 years (95% CI, 4.99 - 5.62) vs.9.57 years (95% CI, 9.47-9.68) for chemotherapy_no HF admission patients. Conclusion: All-cause mortality was 67% higher in patients diagnosed with HF following chemotherapy in adjusted analysis for covariates. Methods to improve and better coordinate of the interdisciplinary care for cancer patients with HF involving cardiologists and oncologists are required, including evidence-based guidelines for the comprehensive assessment, monitoring and management of this cohort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The Circle of Willis (CoW) is the most important collateral pathway of the cerebral artery. The present study aims to investigate the collateral capacity of CoW with anatomical variation when unilateral internalcarotid artery (ICA) is occluded. Methods Basing on MRI data, we have reconstructed eight 3D models with variations in the posterior circulation of the CoW and set four different degrees of stenosis in the right ICA, namely 24%, 43%, 64% and 79%, respectively. Finally, a total of 40 models are performed with computational fluid dynamics simulations. All of the simulations share the same boundary condition with static pressure and the volume flow rate (VFR) are obtained to evaluate their collateral capacity. Results As for the middle cerebral artery (MCA) and the anterior cerebral artery (ACA), the transitional-type model possesses the best collateral capacity. But for the posterior cerebral artery (PCA), unilateral stenosis of ICA has the weakest influence on the unilateral posterior communicating artery (PCoA) absent model. We also find that the full fetal-type posterior circle of Willis is an utmost dangerous variation which must be paid more attention. Conclusion The results demonstrate that different models have different collateral capacities in coping stenosis of unilateral ICA and these differences can be reflected by different outlets. The study could be used as a reference for neurosurgeon in choosing the best treatment strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and deformed shapes, when flowing through these capillaries with diameters varying between 5 10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the RBCs directly influences on the motion and the deformation of the RBCs. However, most of the previous numerical studies have explored the motion and deformation of a single RBC when the interaction between RBCs has been neglected. In this study, motion and deformation of two 2D (two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly model the interactions between RBCs, only two RBCs are considered in this study even though blood with RBCs is continuously flowing through the blood vessels. A spring network based on the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction between RBCs has significant influence on their motion and deformation.