188 resultados para Bit error rate
em Queensland University of Technology - ePrints Archive
Resumo:
So far, most Phase II trials have been designed and analysed under a frequentist framework. Under this framework, a trial is designed so that the overall Type I and Type II errors of the trial are controlled at some desired levels. Recently, a number of articles have advocated the use of Bavesian designs in practice. Under a Bayesian framework, a trial is designed so that the trial stops when the posterior probability of treatment is within certain prespecified thresholds. In this article, we argue that trials under a Bayesian framework can also be designed to control frequentist error rates. We introduce a Bayesian version of Simon's well-known two-stage design to achieve this goal. We also consider two other errors, which are called Bayesian errors in this article because of their similarities to posterior probabilities. We show that our method can also control these Bayesian-type errors. We compare our method with other recent Bayesian designs in a numerical study and discuss implications of different designs on error rates. An example of a clinical trial for patients with nasopharyngeal carcinoma is used to illustrate differences of the different designs.
Resumo:
TCP is a dominant protocol for consistent communication over the internet. It provides flow, congestion and error control mechanisms while using wired reliable networks. Its congestion control mechanism is not suitable for wireless links where data corruption and its lost rate are higher. The physical links are transparent from TCP that takes packet losses due to congestion only and initiates congestion handling mechanisms by reducing transmission speed. This results in wasting already limited available bandwidth on the wireless links. Therefore, there is no use to carry out research on increasing bandwidth of the wireless links until the available bandwidth is not optimally utilized. This paper proposed a hybrid scheme called TCP Detection and Recovery (TCP-DR) to distinguish congestion, corruption and mobility related losses and then instructs the data sending host to take appropriate action. Therefore, the link utilization is optimal while losses are either due to high bit error rate or mobility.
Resumo:
Parallel combinatory orthogonal frequency division multiplexing (PC-OFDM yields lower maximum peak-to-average power ratio (PAR), high bandwidth efficiency and lower bit error rate (BER) on Gaussian channels compared to OFDM systems. However, PC-OFDM does not improve the statistics of PAR significantly. In this chapter, the use of a set of fixed permutations to improve the statistics of the PAR of a PC-OFDM signal is presented. For this technique, interleavers are used to produce K-1 permuted sequences from the same information sequence. The sequence with the lowest PAR, among K sequences is chosen for the transmission. The PAR of a PC-OFDM signal can be further reduced by 3-4 dB by this technique. Mathematical expressions for the complementary cumulative density function (CCDF)of PAR of PC-OFDM signal and interleaved PC-OFDM signal are also presented.
Resumo:
Commonwealth Scientific and Industrial Research Organization (CSIRO) has recently conducted a technology demonstration of a novel fixed wireless broadband access system in rural Australia. The system is based on multi user multiple-input multiple-output orthogonal frequency division multiplexing (MU-MIMO-OFDM). It demonstrated an uplink of six simultaneous users with distances ranging from 10 m to 8.5 km from a central tower, achieving 20 bits s/Hz spectrum efficiency. This paper reports on the analysis of channel capacity and bit error probability simulation based on the measured MUMIMO-OFDM channels obtained during the demonstration, and their comparison with the results based on channels simulated by a novel geometric optics based channel model suitable for MU-MIMO OFDM in rural areas. Despite its simplicity, the model was found to predict channel capacity and bit error rate probability accurately for a typical MU-MIMO-OFDM deployment scenario.
Resumo:
In cooperative communication systems, several wireless communication terminals collaborate to form a virtual-multiple antenna array system and exploit the spatial diversity to achieve a better performance. This thesis proposes a practical slotted protocol for cooperative communication systems with half-duplex single antennas. The performance of the proposed slotted cooperative communication protocol is evaluated in terms of the pairwise error probability and the bit error rate. The proposed protocol achieves the multiple-input single-output performance bound with a novel relay ordering and scheduling strategy.
Resumo:
An opportunistic relay selection scheme improving cooperative diversity is devised using the concept of a virtual SIMO-MISO antenna array. By incorporating multiple users as a virtual distributed antenna, not only helps combat fading but also provides significant advantage in terms of energy consumption. The proposed efficient multiple relay selection uses the concept of the distributed Alamouti scheme in a time varying environment to realize cooperative networking in wireless relay networks and provides the platform for outage, Diversiy-Multiplexing Tradeoff (DMT) and Bit-Error-Rate (BER) analysis to conclude that it is capable of achieving promising diversity gains by operating at much lower SNR when compared with conventional relay selection methods. It also has the added advantage of conserving energy for the relays that are reachable but not selected for the cooperative communication.
Error, Bias, and Long-Branch Attraction in Data for Two Chloroplast Photosystem Genes in Seed Plants
Resumo:
Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady
Resumo:
Hybrid face recognition, using image (2D) and structural (3D) information, has explored the fusion of Nearest Neighbour classifiers. This paper examines the effectiveness of feature modelling for each individual modality, 2D and 3D. Furthermore, it is demonstrated that the fusion of feature modelling techniques for the 2D and 3D modalities yields performance improvements over the individual classifiers. By fusing the feature modelling classifiers for each modality with equal weights the average Equal Error Rate improves from 12.60% for the 2D classifier and 12.10% for the 3D classifier to 7.38% for the Hybrid 2D+3D clasiffier.
Resumo:
The use of the PC and Internet for placing telephone calls will present new opportunities to capture vast amounts of un-transcribed speech for a particular speaker. This paper investigates how to best exploit this data for speaker-dependent speech recognition. Supervised and unsupervised experiments in acoustic model and language model adaptation are presented. Using one hour of automatically transcribed speech per speaker with a word error rate of 36.0%, unsupervised adaptation resulted in an absolute gain of 6.3%, equivalent to 70% of the gain from the supervised case, with additional adaptation data likely to yield further improvements. LM adaptation experiments suggested that although there seems to be a small degree of speaker idiolect, adaptation to the speaker alone, without considering the topic of the conversation, is in itself unlikely to improve transcription accuracy.
Resumo:
This paper proposes the use of the Bayes Factor to replace the Bayesian Information Criterion (BIC) as a criterion for speaker clustering within a speaker diarization system. The BIC is one of the most popular decision criteria used in speaker diarization systems today. However, it will be shown in this paper that the BIC is only an approximation to the Bayes factor of marginal likelihoods of the data given each hypothesis. This paper uses the Bayes factor directly as a decision criterion for speaker clustering, thus removing the error introduced by the BIC approximation. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, leading to a 14.7% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.
Resumo:
In this paper, we present a microphone array beamforming approach to blind speech separation. Unlike previous beamforming approaches, our system does not require a-priori knowledge of the microphone placement and speaker location, making the system directly comparable other blind source separation methods which require no prior knowledge of recording conditions. Microphone location is automatically estimated using an assumed noise field model, and speaker locations are estimated using cross correlation based methods. The system is evaluated on the data provided for the PASCAL Speech Separation Challenge 2 (SSC2), achieving a word error rate of 58% on the evaluation set.
Resumo:
The rapid growth of mobile telephone use, satellite services, and now the wireless Internet and WLANs are generating tremendous changes in telecommunication and networking. As indoor wireless communications become more prevalent, modeling indoor radio wave propagation in populated environments is a topic of significant interest. Wireless MIMO communication exploits phenomena such as multipath propagation to increase data throughput and range, or reduce bit error rates, rather than attempting to eliminate effects of multipath propagation as traditional SISO communication systems seek to do. The MIMO approach can yield significant gains for both link and network capacities, with no additional transmitting power or bandwidth consumption when compared to conventional single-array diversity methods. When MIMO and OFDM systems are combined and deployed in a suitable rich scattering environment such as indoors, a significant capacity gain can be observed due to the assurance of multipath propagation. Channel variations can occur as a result of movement of personnel, industrial machinery, vehicles and other equipment moving within the indoor environment. The time-varying effects on the propagation channel in populated indoor environments depend on the different pedestrian traffic conditions and the particular type of environment considered. A systematic measurement campaign to study pedestrian movement effects in indoor MIMO-OFDM channels has not yet been fully undertaken. Measuring channel variations caused by the relative positioning of pedestrians is essential in the study of indoor MIMO-OFDM broadband wireless networks. Theoretically, due to high multipath scattering, an increase in MIMO-OFDM channel capacity is expected when pedestrians are present. However, measurements indicate that some reductions in channel capacity could be observed as the number of pedestrians approaches 10 due to a reduction in multipath conditions as more human bodies absorb the wireless signals. This dissertation presents a systematic characterization of the effects of pedestrians in indoor MIMO-OFDM channels. Measurement results, using the MIMO-OFDM channel sounder developed at the CSIRO ICT Centre, have been validated by a customized Geometric Optics-based ray tracing simulation. Based on measured and simulated MIMO-OFDM channel capacity and MIMO-OFDM capacity dynamic range, an improved deterministic model for MIMO-OFDM channels in indoor populated environments is presented. The model can be used for the design and analysis of future WLAN to be deployed in indoor environments. The results obtained show that, in both Fixed SNR and Fixed Tx for deterministic condition, the channel capacity dynamic range rose with the number of pedestrians as well as with the number of antenna combinations. In random scenarios with 10 pedestrians, an increment in channel capacity of up to 0.89 bits/sec/Hz in Fixed SNR and up to 1.52 bits/sec/Hz in Fixed Tx has been recorded compared to the one pedestrian scenario. In addition, from the results a maximum increase in average channel capacity of 49% has been measured while 4 antenna elements are used, compared with 2 antenna elements. The highest measured average capacity, 11.75 bits/sec/Hz, corresponds to the 4x4 array with 10 pedestrians moving randomly. Moreover, Additionally, the spread between the highest and lowest value of the the dynamic range is larger for Fixed Tx, predicted 5.5 bits/sec/Hz and measured 1.5 bits/sec/Hz, in comparison with Fixed SNR criteria, predicted 1.5 bits/sec/Hz and measured 0.7 bits/sec/Hz. This has been confirmed by both measurements and simulations ranging from 1 to 5, 7 and 10 pedestrians.
Resumo:
This paper presents a method of voice activity detection (VAD) for high noise scenarios, using a noise robust voiced speech detection feature. The developed method is based on the fusion of two systems. The first system utilises the maximum peak of the normalised time-domain autocorrelation function (MaxPeak). The second zone system uses a novel combination of cross-correlation and zero-crossing rate of the normalised autocorrelation to approximate a measure of signal pitch and periodicity (CrossCorr) that is hypothesised to be noise robust. The score outputs by the two systems are then merged using weighted sum fusion to create the proposed autocorrelation zero-crossing rate (AZR) VAD. Accuracy of AZR was compared to state of the art and standardised VAD methods and was shown to outperform the best performing system with an average relative improvement of 24.8% in half-total error rate (HTER) on the QUT-NOISE-TIMIT database created using real recordings from high-noise environments.
Resumo:
This paper proposes the use of the Bayes Factor as a distance metric for speaker segmentation within a speaker diarization system. The proposed approach uses a pair of constant sized, sliding windows to compute the value of the Bayes Factor between the adjacent windows over the entire audio. Results obtained on the 2002 Rich Transcription Evaluation dataset show an improved segmentation performance compared to previous approaches reported in literature using the Generalized Likelihood Ratio. When applied in a speaker diarization system, this approach results in a 5.1% relative improvement in the overall Diarization Error Rate compared to the baseline.