50 resultados para Bisphenol A-Glycidyl Methacrylate

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-throughput plasmid DNA (pDNA) manufacture is obstructed predominantly by the performance of conventional stationary phases. For this reason, the search for new materials for fast chromatographic separation of pDNA is ongoing. A poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (GMA-EGDMA) monolithic material was synthesised via a thermal-free radical reaction, functionalised with different amino groups from urea, 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) and ammonia in order to investigate their plasmid adsorption capacities. Physical characterisation of the monolithic polymer showed a macroporous polymer having a unimodal pore size distribution pivoted at 600 nm. Chromatographic characterisation of the functionalised polymers using pUC19 plasmid isolated from E. coli DH5α-pUC19 showed a maximum plasmid adsorption capacity of 18.73 mg pDNA/mL with a dissociation constant (KD) of 0.11 mg/mL for GMA-EGDMA/DEAE-Cl polymer. Studies on ligand leaching and degradation demonstrated the stability of GMA-EGDMA/DEAE-Cl after the functionalised polymers were contacted with 1.0 M NaOH, which is a model reagent for most 'cleaning in place' (CIP) systems. However, it is the economic advantage of an adsorbent material that makes it so attractive for commercial purification purposes. Economic evaluation of the performance of the functionalised polymers on the grounds of polymer cost (PC)/mg pDNA retained endorsed the suitability of GMA-EGDMA/DEAE-Cl polymer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A monolithic stationary phase was prepared via free radical co-polymerization of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with pore diameter tailored specifically for plasmid binding, retention and elution. The polymer was functionalized. with 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) for anion-exchange purification of plasmid DNA (pDNA) from clarified lysate obtained from E. coli DH5α-pUC19 culture in a ribonuclease/ protease-free environment. Characterization of the monolithic resin showed a porous material, with 68% of the pores existing in the matrix having diameters above 300 nm. The final product isolated from a single-stage 5 min anion-exchange purification was a pure and homogeneous supercoiled (SC) pDNA with no gDNA, RNA and protein contamination as confirmed by ethidium bromide agarose gel electrophoresis (EtBr-AGE), enzyme restriction analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This non-toxic technique is cGMP compatible and highly scalable for production of pDNA on a commercial level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Methacrylate-based hydrogels, such as homo- and copolymers of 2-hydroxyethyl methacrylate (HEMA), have demonstrated significant potential for use in biomedical applications. However, many of these hydrogels tend to resist cell attachment and growth at their surfaces, which can be detrimental for certain applications. In this article, glycidyl methacrylate (GMA) was copolymerized with HEMA to generate gels functionalized with epoxide groups. The epoxides were then functionalized by two sequential click reactions, namely, nucleophilic ring opening of epoxides with sodium azide and then coupling of small molecules and peptides via Huisgen's copper catalyzed 1,3-dipolar cycloaddition of azides with alkynes. Using this strategy it was possible to control the degree of functionalization by controlling the feed ratio of monomers during polymerization. In vitro cell culture of human retinal pigment epithelial cell line (ARPE-19) with the hydrogels showed improved cell adhesion, growth and proliferation for hydrogels that were functionalized with a peptide containing the RGD sequence. In addition, the cell attachment progressively decreased with increasing densities of the RGD containing peptide. In summary, a facile methodology has been presented that gives rise to hydrogels with controlled degrees of functionality, such that the cell response is directly related to the levels and nature of that functionality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymethacrylate monoliths, specifically poly(glycidyl methacrylate-co-ethylene dimethacrylate) or poly(GMA-co-EDMA) monoliths, are a new generation of chromatographic supports and are significantly different from conventional particle-based adsorbents, membranes, and other monolithic supports for biomolecule purification. Similar to other monoliths, polymethacrylate monoliths possess large pores which allow convective flow of mobile phase and result in high flow rates at reduced pressure drop, unlike particulate supports. The simplicity of the adsorbent synthesis, pH resistance, and the ease and flexibility of tailoring their pore size to that of the target biomolecule are the key properties which differentiate polymethacrylate monoliths from other monoliths. Polymethacrylate monoliths are endowed with reactive epoxy groups for easy functionalization (with anion-exchange, hydrophobic, and affinity ligands) and high ligand retention. In this review, the structure and performance of polymethacrylate monoliths for chromatographic purification of biomolecules are evaluated and compared to those of other supports. The development and use of polymethacrylate monoliths for research applications have grown rapidly in recent times and have enabled the achievement of high through-put biomolecule purification on semi-preparative and preparative scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photo-curable biodegradable macromers were prepared by ring opening polymerization of D,L-lactide (DLLA), (similar to)-caprolactone (CL) and 1,3-trimethylene carbonate (TMC) in the presence of glycerol or sorbitol as initiator and stannous octoate as catalyst, and subsequent methacrylation of the terminal hydroxyl groups. These methacrylated macromers, ranging in molecular weight from approximately 700 to 6000 g/mol, were cross-linked using ultraviolet (UV) light to form biodegradable networks. Homogeneous networks with high gel contents were prepared. One of the resins based on PTMC was used to prepare three-dimensional structures by stereo-lithography using a commercially available apparatus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photo-curable biodegradable macromers were prepared by ring opening polymerization of D,L-lactide (DLLA), ε-caprolactone (CL) and 1,3-trimethylene carbonate (TMC) in the presence of glycerol or sorbitol as initiator and stannous octoate as catalyst, and subsequent methacrylation of the terminal hydroxyl groups. These methacrylated macromers, ranging in molecular weight from approximately 700 to 6000 g/mol, were cross-linked using ultraviolet (UV) light to form biodegradable networks. Homogeneous networks with high gel contents were prepared. One of the resins based on PTMC was used to prepare three-dimensional structures by stereo-lithography using a commercially available apparatus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organo Arizona SAz-2 Ca-montmorillonite was prepared with different surfactant (DDTMA and HDTMA) loadings through direct ion exchange. The structural properties of the prepared organoclays were characterized by XRD and BET instruments. Batch experiments were carried out on the adsorption of bisphenol A (BPA) under different experimental conditions of pH and temperature to determine the optimum adsorption conditions. The hydrophobic phase and positively charged surface created by the loaded surfactant molecules are responsible for the adsorption of BPA. The adsorption of BPA onto organoclays is well described by pseudo-second order kinetic model and the Langmuir isotherm. The maximum adsorption capacity of the organoclays for BPA obtained from a Langmuir isotherm was 151.52 mg/g at 297 K. This value is among the highest values for BPA adsorption compared with other adsorbents. In addition, the adsorption process was spontaneous and exothermic based on the adsorption thermodynamics study. The organoclays intercalated with longer chain surfactant molecules possessed a greater adsorption capacity for BPA even under alkaline conditions. This process provides a pathway for the removal of BPA from contaminated waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bisphenol A (BPA or 4,4’-(propane-2,2-diyl)diphenol) is a chemical intermediate in the production of polycarbonate and epoxy resins, and used in a wide range of applications. BPA has attracted significant attention in the past decade due to its frequency of detection in human populations worldwide, demonstrated animal toxicity and potential impact on human health, particularly during critical periods of development. The aim of this study was to perform a preliminary assessment of age-related trends in urinary concentration and to estimate daily excretion of BPA in Australian children (aged (>0 – <5 years) and adults (≥15 – <75 years). This was achieved using 79 samples pooled by age and gender, created from 868 individual samples of convenience collected as part of routine, community-based pathology testing. Total BPA was analyzed using online-SPE-LC-MS/MS and detected in all samples with a range of 0.65 – 265 ng/ml. No significant differences were observed between males and females. A urine flow model was constructed from published values and used to provide an estimate of daily excretion per unit bodyweight for each pooled sample. The daily excretion estimates ranged from 26.2 – 18200 ng/kg-d for children; and 20.1 – 165 ng/kg-d for adults. Urinary concentrations and estimated excretion rates were inversely associated with age, and estimated daily excretion rates in infants and young children were significantly higher than in adults (geometric mean: 107 and 47.0 ng/kg-d, respectively). Higher excretion of BPA in children may be explained by their higher food consumption relative to body weight compared to adults and adolescents, and may also reflect alternative exposure pathways and sources. Keywords: bisphenol A, biomonitoring, children, urine flow, Australia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Used frequently in food contact materials, bisphenol A (BPA) has been studied extensively in recent years, and ubiquitous exposure in the general population has been demonstrated worldwide. Characterising within- and between-individual variability of BPA concentrations is important for characterising exposure in biomonitoring studies, and this has been investigated previously in adults, but not in children. The aim of this study was to characterise the short-term variability of BPA in spot urine samples in young children. Children aged ≥2-<4 years (n = 25) were recruited from an existing cohort in Queensland Australia, and donated four spot urine samples each over a two day period. Samples were analysed for total BPA using isotope dilution online solid phase extraction-liquid chromatography-tandem mass spectrometry, and concentrations ranged from 0.53–74.5 ng/ml, with geometric mean and standard deviation of 2.70 ng/ml and 2.94 ng/ml, respectively. Sex and time of sample collection were not significant predictors of BPA concentration. The between-individual variability was approximately equal to the within-individual variability (ICC = 0.51), and this ICC is somewhat higher than previously reported literature values. This may be the result of physiological or behavioural differences between children and adults or of the relatively short exposure window assessed. Using a bootstrapping methodology, a single sample resulted in correct tertile classification approximately 70% of the time. This study suggests that single spot samples obtained from young children provide a reliable characterization of absolute and relative exposure over the short time window studied, but this may not hold true over longer timeframes.