275 resultados para Biomass characterization

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic decomposition is a very attractive way to convert tar components into H2, CO and other useful chemicals. The performance of Fe3Ni8/PG (palygorskite, PG) reduced in hydrogen at different temperatures for the catalytic decomposition of benzene has been assessed. Benzene was used as the model biomass tar. The effects of calcination atmosphere, temperatures and benzene concentration on catalytic cracking of benzene were measured. The results of XRD (X-Ray Diffraction), TEM (Transmission Electron Microscope), TPR (Temperature Program Reduction), TPSR (Temperature Program Surface Reduction), TC (Total Carbon), the reactivity component and reaction mechanism over Fe3Ni8/PG for catalytic cracking of benzene are discussed. The results showed particles of awaruite (Fe, Ni) about 2–30 nm were found on the surface of palygorskite by TEM when the calcination temperature was 600 °C. Particles with size smaller than 30 nm were obtained on all prepared Fe3Ni8/PG catalysts as shown by XRD. The nanoparticles proved to be the reactive component for catalytic cracking of benzene and the increase of active particle size caused the decrease in the reactivity of Fe3Ni8/PG. Fe3Ni8/PG annealed in hydrogen at 600 °C was proved to have the best reactivity in experiments (45% hydrogen yield). High concentration benzene (448 g/m3) accelerated the formation of carbon deposition. However, iron oxide decreases carbon deposition and increases the stability of catalyst for catalytic cracking of benzene. The application of Fe3Ni8/PG catalysts was proved a very effective catalyst for the catalytic cracking of benzene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Locally available different bbiomass solid wastes, pine seed, date seed, plum seed, nutshell, hay of catkin, rice husk, jute stick, saw-dust, wheat straw and linseed residue in the particle form have been pyrolyzed in laboratory scale fixed bed reactor. The products obtained are pyrolysis oil, solid char and gas. The oil and char are collected while the gas is flared into atmosphere. The variation of oil yield for different biomass feedstock with reaction parameters like, reactor bed temperature, feed size and running time is presented in a comparative way in the paper. A maximum liquid yield of 55 wt% of dry feedstock is obtained at an optimum temperature of 500 °C for a feed size of 300-600 μm with a running time of 55 min with nutshell as the feedstock while the minimum liquid yield is found to be 30 wt% of feedstock at an optimum temperature of 400 °C for a feed size of 2.36 mm with a running time of 65 min for linseed residue. A detailed study on the variation of product yields with reaction parameters is presented for the latest investigation with pine seed as the feedstock where a maximum liquid yield of 40 wt% of dry feedstock is obtained at an optimum temperature of 500 °C for a feed size of 2.36-2.76 mm with a running time of 120 min. The characterization of the pyrolysis oil is carried out and a comparison of some selected properties of the oil is presented. From the study it is exhibited that the biomass solid wastes have the potential to be converted into liquid oil as a source of renewable energy with some further upgrading of the products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prescribed burnings are conducted in Queensland each year from August until November aiming to decrease the impact of bushfire hazards and maintain the health of vegetation. This study reports chemical characteristics of the ambient aerosol, with a focus on source apportionment of the organic aerosol (OA)fraction, during the prescribed biomass burning (BB) season in Brisbane 2013. All measurements were conducted within the International Laboratory for Air Quality and Health (ILAQH) located in Brisbane’s Central Business District. Chemical composition, degree of ageing and the influence of BB emission on the air quality of central Brisbane were characterized using a compact Time of Flight Aerosol Mass Spectrometer (cToF-AMS). AMS loadings were dominated by OA (64 %), followed by, sulfate (17 %), ammonium (14 %) and nitrates (5 %). Source apportionment was applied on the AMS OA mass spectra via the multilinear engine solver (ME-2) implementation within the recently developed Source Finder (SoFi) interface. Six factors were extracted including hydrocarbon-like OA (HOA), cooking-related OA (COA), biomass burning OA (BBOA), low-volatility oxygenated OA (LV-OOA), semivolatile oxygenated OA (SV-OOA), and nitrogen-enriched OA (NOA). The aerosol fraction that was attributed to BB factor was 9 %, on average over the sampling period. The high proportion of oxygenated OA (72 %), typically representing aged emissions, could possess a fraction of oxygenated species transformed from BB components on their way to the sampling site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Görgeyite, K2Ca5(SO4)6··H2O, is a very rare monoclinic double salt found in evaporites related to the slightly more common mineral syngenite. At 1 atmosphere with increasing external temperature from 25 to 150 °C, the following succession of minerals was formed: first gypsum and K2O, followed at 100 °C by görgeyite. Changes in concentration at 150 °C due to evaporation resulted in the formation of syngenite and finally arcanite. Under hydrothermal conditions, the succession is syngenite at 50 °C, followed by görgyeite at 100 and 150 °C. Increasing the synthesis time at 100 °C and 1 atmosphere showed that initially gypsum was formed, later being replaced by görgeyite. Finally görgeyite was replaced by syngenite, indicating that görgeyite is a metastable phase under these conditions. Under hydrothermal conditions, syngenite plus a small amount of gypsum was formed, after two days being replaced by görgeyite. No further changes were observed with increasing time. Pure görgeyite showed elongated crystals approximately 500 to 1000 µ m in length. The infrared and Raman spectra are mainly showing the vibrational modes of the sulfate groups and the crystal water (structural water). Water is characterized by OH-stretching modes at 3526 and 3577 cm–1 , OH-bending modes at 1615 and 1647 cm–1 , and an OH-libration mode at 876 cm–1 . The sulfate 1 mode is weak in the infrared but showed strong bands at 1005 and 1013 cm–1 in the Raman spectrum. The 2 mode also showed strong bands in the Raman spectrum at 433, 440, 457, and 480 cm–1 . The 3 mode is characterized by a complex set of bands in both infrared and Raman spectra around 1150 cm–1 , whereas 4 is found at 650 cm–1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single walled carbon nanotubes (SWNTs) were incorporated in polymer nanocomposites based on poly(3-octylthiophene) (P3OT), thermoplastic polyurethane (TPU) or a blend of them. Thermogravimetry demonstrated the success of the purification procedure employed in the chemical treatment of SWNTs prior to composite preparation. Stable dispersions of SWNTs in chloroform were obtained by non-covalent interactions with the dissolved polymers. Composites exhibited glass transitions, melting temperatures and heat of fusion which changed in relation to pure polymers. This behavior is discussed as associated to interactions between nanotubes and polymers. The conductivity at room temperature of the blend (TPU-P3OT) with SWNT is higher than the P3OT/SWNT composite.