227 resultados para Biomarkers, Breast Cancer, Prostate Cancer

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anti-estrogen treatment for hormone-sensitive breast cancer and the androgen deprivation therapy for prostate cancer can lead to the development of osteoporosis and bone fractures. Metastases associated with prostate and breast cancer can also occur in bone. Bisphosphonates are used in these types of bone dysfunction. Zoledronic acid is the most potent bisphosphonate. In osteoporosis, zoledronic acid inhibits bone reabsorption and increases bone mineral density for at least a year after intravenous administration. The efficacy and safety of zoledronic acid in osteoporosis secondary to hormone-sensitive cancers (prostate and breast), and in the bone metastases associated with these cancers are reviewed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted a large-scale association study to identify genes that influence nonfamilial breast cancer risk using a collection of German cases and matched controls and >25,000 single nucleotide polymorphisms located within 16,000 genes. One of the candidate loci identified was located on chromosome 19p13.2 [odds ratio (OR) = 1.5, P = 0.001]. The effect was substantially stronger in the subset of cases with reported family history of breast cancer (OR = 3.4, P = 0.001). The finding was subsequently replicated in two independent collections (combined OR = 1.4, P < 0.001) and was also associated with predisposition to prostate cancer in an independent sample set of prostate cancer cases and matched controls (OR = 1.4, P = 0.002). High-density single nucleotide polymorphism mapping showed that the extent of association spans 20 kb and includes the intercellular adhesion molecule genes ICAM1, ICAM4, and ICAM5. Although genetic variants in ICAM5 showed the strongest association with disease status, ICAM1 is expressed at highest levels in normal and tumor breast tissue. A variant in ICAM5 was also associated with disease progression and prognosis. Because ICAMs are suitable targets for antibodies and small molecules, these findings may not only provide diagnostic and prognostic markers but also new therapeutic opportunities in breast and prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Hydrogels prepared from poly(ethylene glycol) (PEG) and maleimide-functionalized heparin provide a potential matrix for use in developing three dimensional (3D) models. We have previously demonstrated that these hydrogels support the cultivation of human umbilical vein endothelial cells (HUVECs) (1). We extend this body of work to study the ability to create an extracellular matrix (ECM)-like model to study breast and prostate cancer cell growth in 3D. Also, we investigate the ability to produce a tri-culture mimicking tumour angiogenesis with cancer spheroids, HUVECs and mesenchymal stem cells (MSC). Materials and Methods The breast cancer cell lines, MCF-7 and MDA-MB-231, and prostate cancer cell lines, LNCaP and PC3, were seeded into starPEG-heparin hydrogels and grown for 14 Days to analyse the effects of varying hydrogel stiffness on spheroid development. Resulting hydrogel constructs were analyzed via Alamar Blue assays, light microscopy, and immunofluorescence staining for cytokeratin 8/18, Ki67 and E-Cadherin. Cancer cell lines were then pre-grown in hydrogels for 5-7 days and then re-seeded into starPEG-heparin hydrogels functionalised with RGD, SDF-1, bFGF and VEGF as spheroids with HUVECs and MSC and grown for 14 days as a tri-culture in Endothelial Cell Growth Medium (ECGM; Promocell). Cell lines were also seeded as a single cell suspension into the functionalised tri-culture system. Cultures were fixed in 4% paraformaldehyde and analysed via immunostaining for Von Willebrand Factor and CD31, as well as the above mentioned markers, and observed using confocal microscopy. Results Cultures prepared in MMP-cleavable starPEG-heparin hydrogels display spheroid formation in contrast to adherent growth on tissue culture plastic. Small differences were visualised in cancer spheroid growth between different gel stiffness across the range of cell lines. Cancer cell lines were able to be co-cultivated with HUVECs and MSC. HUVEC tube formation and cancer line spheroid formation occured after 3-4 days. Interaction was visualised between tumours and HUVECs via confocal microscopy. Slightly increased interaction was seen between cancer tumours and micro-vascular tubes when seeded as single cells compared with the pre-formed spheroid approach. Further studies intend to utilise cytokine gradients to further optimise the ECM environment of in situ tumour angiogenesis. Discussion and Conclusions Our results confirm the suitability of hydrogels constructed from starPEG-heparin for HUVECs and MSC co-cultivation with cancer cell lines to study cell-cell and cell-matrix interactions in a 3D environment. This represents a step forward in the development of 3D culture models to study the pathomechanisms of breast and prostate cancer. References 1. Tsurkan MV, Chwalek K, Prokoph S, Zieris A, Levental KR, Freudenberg U, Werner C. Advanced Materials. 25, 2606-10, 2013. Disclosures The authors declare no conflicts of interest

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose/Objectives: To examine peak volume of oxygen consumption (VO2peak) changes after a high- or low-intensity exercise intervention.
 Design: Experimental trial comparing two randomized intervention groups with control. 
 Setting: An exercise clinic at a university in Australia.
 Sample: 87 prostate cancer survivors (aged 47–80 years) and 72 breast cancer survivors (aged 34–76 years).
 Methods: Participants enrolled in an eight-week exercise intervention (n = 84) or control (n = 75) group. Intervention participants were randomized to low-intensity (n = 44, 60%–65% VO2peak, 50%–65% of one repetition maximum [1RM]) or high-intensity (n = 40, 75%–80% VO2peak, 65%–80% 1RM) exercise groups. Participants in the control group continued usual routines. All participants were assessed at weeks 1 and 10. The intervention groups were reassessed four months postintervention for sustainability. 
 Main Research Variables: VO2peak and self-reported physical activity.
 Findings: Intervention groups improved VO2peak similarly (p = 0.083), and both more than controls (p < 0.001). The high-intensity group maintained VO2peak at follow-up, whereas the low-intensity group regressed (p = 0.021). The low-intensity group minimally changed from baseline to follow-up by 0.5 ml/kg per minute, whereas the high-intensity group significantly improved by 2.2 ml/kg per minute (p = 0.01). Intervention groups always reported similar physical activity levels. 
 Conclusions: Higher-intensity exercise provided more sustainable cardiorespiratory benefits than lower-intensity exercise.
 Implications for Nursing: Survivors need guidance on exercise intensity, because a high volume of low-intensity exercise may not provide sustained health benefits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study qualitatively examined an 8 week group exercise and counseling intervention for breast and prostate cancer survivors. Groups exercised 3 days per week, 50 minutes per session,performing moderate intensity aerobic and resistance training. Groups also underwent 90 minute supportive group psychotherapy sessions once per week. Survivors discussed their experiences in focus groups post intervention. Transcripts were analyzed using interpretative phenomenological analysis. Survivors described how exercise facilitated counseling by creating mutual aid and trust, and counseling helped participants with self-identity, sexuality, and returning to normalcy. When possible, counselors and fitness professionals should create partnerships to optimally support cancer survivors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of an anti-cancer natural product drug discovery program, we recently identified eusynstyelamide B (EB), which displayed cytotoxicity against MDA-MB-231 breast cancer cells (IC50 = 5 μM) and induced apoptosis. Here, we investigated the mechanism of action of EB in cancer cell lines of the prostate (LNCaP) and breast (MDA-MB-231). EB inhibited cell growth (IC50 = 5 μM) and induced a G2 cell cycle arrest, as shown by a significant increase in the G2/M cell population in the absence of elevated levels of the mitotic marker phospho-histone H3. In contrast to MDA-MB-231 cells, EB did not induce cell death in LNCaP cells when treated for up to 10 days. Transcript profiling and Ingenuity Pathway Analysis suggested that EB activated DNA damage pathways in LNCaP cells. Consistent with this, CHK2 phosphorylation was increased, p21CIP1/WAF1 was up-regulated and CDC2 expression strongly reduced by EB. Importantly, EB caused DNA double-strand breaks, yet did not directly interact with DNA. Analysis of topoisomerase II-mediated decatenation discovered that EB is a novel topoisomerase II poison.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of protein and metabolite expression patterns in blood using mass spectrometry and high-throughput antibody-based screening platforms has potential for the discovery of new biomarkers for managing breast cancer patient treatment. Previously identified blood-based breast cancer biomarkers, including cancer antigen 15.3 (CA15-3) are useful in combination with imaging (computed tomography scans, magnetic resonance imaging, X-rays) and physical examination for monitoring tumour burden in advanced breast cancer patients. However, these biomarkers suffer from insufficient levels of accuracy and with new therapies available for the treatment of breast cancer, there is an urgent need for reliable, non-invasive biomarkers that measure tumour burden with high sensitivity and specificity so as to provide early warning of the need to switch to an alternative treatment. The aim of this study was to identify a biomarker signature of tumour burden using cancer and non-cancer (healthy controls/non-malignant breast disease) patient samples. Results demonstrate that combinations of three candidate biomarkers from Glutamate, 12-Hydroxyeicosatetraenoic acid, Beta-hydroxybutyrate, Factor V and Matrix metalloproteinase-1 with CA15-3, an established biomarker for breast cancer, were found to mirror tumour burden, with AUC values ranging from 0.71 to 0.98 when comparing non-malignant breast disease to the different stages of breast cancer. Further validation of these biomarker panels could potentially facilitate the management of breast cancer patients, especially to assess changes in tumour burden in combination with imaging and physical examination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overweight and obesity are risk factors for post-menopausal breast cancer, and many women diagnosed with breast cancer, irrespective of menopausal status, gain weight after diagnosis. Weight management plays an important role in rehabilitation and recovery since obesity and/or weight gain may lead to poorer breast cancer prognosis, as well as prevalent co-morbid conditions (e.g. cardiovascular disease and diabetes), poorer surgical outcomes (e.g., increased operating and recovery times, higher infection rates, and poorer healing), lymphedema, fatigue, functional decline, and poorer health and overall quality of life. Health care professionals should encourage weight management at all phases of the cancer care continuum as a means to potentially avoid adverse sequelae and late effects, as well as to improve overall health and possibly survival. Comprehensive approaches that involve dietary and behavior modification, and increased aerobic and strength training exercise have shown promise in either preventing weight gain or promoting weight loss, reducing biomarkers associated with inflammation and co-morbidity, and improving lifestyle behaviors, functional status, and quality of life in this high-risk patient population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the insulin-like growth factor (IGF) family have been shown to play critical roles in normal growth and development, as well as in tumour biology. The IGF system is complex and the biological effects of the IGFs are determined by their diverse interactions between many molecules, including their interactions with extracellular matrix (ECM) proteins. Recent studies have demonstrated that IGFs associate with the ECM protein vitronectin (VN) through IGF-binding proteins (IGFBP) and that this interaction modulates IGF-stimulated biological functions, namely cell migration and cell survival through the cooperative involvement of the type-I IGF receptor (IGF-1R) and VN-binding integrins. Since IGFs play important roles in the transformation and progression of breast cancer and VN has been found to be over-expressed at the leading edge of breast tumours, this project aimed to describe the effects of IGF-I:VN interactions on breast cell function. This was undertaken to dissect the molecular mechanisms underlying IGF-I:VN-induced responses and to design inhibitors to block the effects of such interactions. The studies described herein demonstrate that the increase in migration of MCF-7 breast cancer cells in response to the IGF-I:IGFBP-5:VN complex is accompanied by differential expression of genes known to be involved in migration, invasion and/or survival, including Tissue-factor (TF), Stratifin (SFN), Ephrin-B2, Sharp-2 and PAI-1. This „migration gene signature‟ was confirmed using real-time PCR analysis. Substitution of the native IGF-I within the IGF-I:IGFBP:VN complex with the IGF-I analogue, \[L24]\[A31]-IGF-I, which has a reduced affinity for the IGF-1R, failed to stimulate cell migration and interestingly, also failed to induce the differential gene expression. This supports the involvement of the IGF-1R in mediating these changes in gene expression. Furthermore, lentiviral shRNA-mediated stable knockdown of TF and SFN completely abrogated the increased cell migration induced by IGF-I:IGFBP:VN complexes in MCF-7 cells. Indeed, when these cells were grown in 3D Matrigel™ cultures a decrease in the overall size of the 3D spheroids in response to the IGF-I:IGFBP:VN complexes was observed compared to the parental MCF-7 cells. This suggests that TF and SFN have a role in complex-stimulated cell survival. Moreover, signalling studies performed on cells with the reduced expression of either TF or SFN had a decreased IGF-1R activation, suggesting the involvement of signalling pathways downstream of IGF-1R in TF- and/or SFN-mediated cell migration and cell survival. Taken together, these studies provide evidence for a common mechanism activated downstream of the IGF-1R that induces the expression of the „migration gene signature‟ in response to the IGF-I:IGFBP:VN complex that confers breast cancer cells the propensity to migrate and survive. Given the functional significance of the interdependence of ECM and growth factor (GF) interactions in stimulating processes key to breast cancer progression, this project aimed at developing strategies to prevent such growth factor:ECM interactions in an effort to inhibit the downstream functional effects. This may result in the reduction in the levels of ECM-bound IGF-I present in close proximity to the cells, thereby leading to a reduction in the stimulation of IGF-1R present on the cell surface. Indeed, the inhibition of IGF-I-mediated effects through the disruption of its association with ECM would not alter the physiological levels of IGF-I and potentially only exert effects in situations where abnormal over expression of ECM proteins are found; namely carcinomas and hyperproliferative diseases. In summary, this PhD project has identified novel, innovative and realistic strategies that can be used in vitro to inhibit the functions exerted by the IGF-I:IGFBP:VN multiprotein complexes critical for cancer progression, with a potential to be translated into in vivo investigations. Furthermore, TF and SFN were found to mediate IGF-I:IGFBP:VN-induced effects, thereby revealing their potential to be used as therapeutic targets or as predictive biomarkers for the efficacy of IGF-1R targeting therapies in breast cancer patients. In addition to its therapeutic and clinical scope, this PhD project has significantly contributed to the understanding of the role of the IGF system in breast tumour biology by providing valuable new information on the mechanistic events underpinning IGF-I:VN-mediated effects on breast cell functions. Furthermore, this is the first instance where favourable binding sites for IGF-II, IGFBP-3 and IGFBP-5 on VN have been identified. Taken together, this study has functionally characterised the interactions between IGF-I and VN and through innovative strategies has provided a platform for the development of novel therapies targeting these interactions and their downstream effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the leading cause of cancer death among Australian women and its incidence is annually increasing. Genetic factors are involved in the complex etiology of breast cancer. The seco-steroid hormone, 1.25 dihydroxy vitamin D3 can influence breast cancer cell growth in vitro. A number of studies have reported correlations between vitamin D receptor (VDR) gene polymorphisms and several diseases including prostate cancer and osteoporosis. In breast cancer, low vitamin D levels in serum are correlated with disease progression and bone metastases, a situation also noted in prostate cancer and suggesting the involvement of the VDR. In our study, 2 restriction fragment length polymorphisms (RFLP) in the 3' region (detected by Apa1 and Taq1) and an initiation codon variant in the 5' end of the VDR gene (detected by Fok1) were tested for association with breast cancer risk in 135 females with sporadic breast cancer and 110 cancer-free female controls. Allele frequencies of the 3' Apa1 polymorphism showed a significant association (p = 0.016; OR = 1.56, 95% CI = 1.09-2.24) while the Taq1 RFLP showed a similar trend (p = 0.053; OR = 1.45, 95% CI = 1.00-2.00). Allele frequencies of the Fok1 polymorphism were not significantly different (p = 0.97; OR = 0.99, 95% CI = 0.69-1.43) in the study population. Our results suggest that specific alleles of the VDR gene located near the 3' region may identify an increased risk for breast cancer and justify further investigation of the role of VDR in breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone metastases are severely debilitating and have a significant impact on the quality of life of women with metastatic breast cancer. Treatment options are limited and in order to develop more targeted therapies, improved understanding of the complex mechanisms that lead to bone lesion development are warranted. Interestingly, whilst prostate-derived bone metastases are characterised by mixed or osteoblastic lesions, breast-derived bone metastases are characterised by osteolytic lesions, suggesting unique regulatory patterns. This study aimed to measure the changes in bone formation and bone resorption activity at two time-points (18 and 36 days) during development of the bone lesion following intratibial injection of MDA-MB-231 human breast cancer cells into the left tibiae of Severely Combined Immuno-Deficient (SCID) mice. The contralateral tibia was used as a control. Tibiae were extracted and processed for undecalcified histomorphometric analysis. We provide evidence that the early bone loss observed following exposure to MDA-MB-231 cells was due to a significant reduction in mineral apposition rate, rather than increased levels of bone resorption. This suggests that osteoblast activity was impaired in the presence of breast cancer cells, contrary to previous reports of osteoclast-dependent bone loss. Furthermore mRNA expression of Dickkopf Homolog 1 (DKK-1) and Noggin were confirmed in the MDA-MB-231 cell line, both of which antagonise osteoblast regulatory pathways. The observed bone loss following injection of cancer cells was due to an overall thinning of the trabecular bone struts rather than perforation of the bone tissue matrix (as measured by trabecular width and trabecular separation, respectively), suggesting an opportunity to reverse the cancer-induced bone changes. These novel insights into the mechanisms through which osteolytic bone lesions develop may be important in the development of new treatment strategies for metastatic breast cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heparan sulfate proteoglycans (HSPGs) are key components of the extracellular matrix that mediate cell proliferation, invasion, and cellular signaling. The biological functions of HSPGs are linked to their co-stimulatory effects on extracellular ligands (e.g., WNTs) and the resulting activation of transcription factors that control mammalian development but also associated with tumorigenesis. We examined the expression profile of HSPG core protein syndecans (SDC1–4) and glypicans (GPC1–6) along with the enzymes that initiate or modify their glycosaminoglycan chains in human breast cancer (HBC) epithelial cells. Gene expression in relation to cell proliferation was examined in the HBC cell lines MCF-7 and MDA-MB-231 following treatment with the HS agonist heparin. Heparin increased gene expression of chain initiation and modification enzymes including EXT1 and NDST1, as well as core proteins SDC2 and GPC6. With HS/Wnt interactions established, we next investigated WNT pathway components and observed that increased proliferation of the more invasive MDA-MB-231 cells is associated with activation of the Wnt signaling pathway. Specifically, there was substantial upregulation (>5-fold) of AXIN1, WNT4A, and MYC in MDA-MB-231 but not in MCF-7 cells. The changes in gene expression observed for HSPG core proteins and related enzymes along with the associated Wnt signaling components suggest coordinated interactions. The influence of HSPGs on cellular proliferation and invasive potential of breast cancer epithelial cells are cell and niche specific. Further studies on the interactions between HSPGs and WNT ligands may yield clinically relevant molecular targets, as well as new biomarkers for characterization of breast cancer progression.