21 resultados para Biology, Microbiology|Health Sciences, Pathology|Health Sciences, Immunology
em Queensland University of Technology - ePrints Archive
Resumo:
Seasonal patterns have been found in a remarkable range of health conditions, including birth defects, respiratory infections and cardiovascular disease. Accurately estimating the size and timing of seasonal peaks in disease incidence is an aid to understanding the causes and possibly to developing interventions. With global warming increasing the intensity of seasonal weather patterns around the world, a review of the methods for estimating seasonal effects on health is timely. This is the first book on statistical methods for seasonal data written for a health audience. It describes methods for a range of outcomes (including continuous, count and binomial data) and demonstrates appropriate techniques for summarising and modelling these data. It has a practical focus and uses interesting examples to motivate and illustrate the methods. The statistical procedures and example data sets are available in an R package called ‘season’. Adrian Barnett is a senior research fellow at Queensland University of Technology, Australia. Annette Dobson is a Professor of Biostatistics at The University of Queensland, Australia. Both are experienced medical statisticians with a commitment to statistical education and have previously collaborated in research in the methodological developments and applications of biostatistics, especially to time series data. Among other projects, they worked together on revising the well-known textbook "An Introduction to Generalized Linear Models," third edition, Chapman Hall/CRC, 2008. In their new book they share their knowledge of statistical methods for examining seasonal patterns in health.
Resumo:
BACKGROUND: The temporomandibular joint (TMJ) cartilage consists of condylar cartilage and disc and undergoes continuous remodeling throughout post-natal life. To maintain the integrity of the TMJ cartilage, anti-angiogenic factors play an important role during the remodeling process. In this study, we investigated the expression of the anti-angiogenic factor, chondromodulin- 1 (ChM-1), in TMJ cartilage and evaluate its potential role in TMJ remodeling. METHODS: Eight TMJ specimens were collected from six 4-month-old Japanese white rabbits. Safranin-O staining was performed to determine proteoglycan content. ChM-1 expression in TMJ condylar cartilage and disc was determined by immunohistochemistry. Three human perforated disc tissue samples were collected for investigation of ChM-1 and vascular endothelial growth factor (VEGF) distribution in perforated TMJ disc. RESULTS: Safranin-O stained weakly in TMJ compared with tibial articular and epiphyseal cartilage. In TMJ, ChM-1 was expressed in the proliferative and hypertrophic zone of condylar cartilage and chondrocyte-like cells in the disc. No expression of ChM-1 was observed in osteoblasts and subchondral bone. ChM-1 and VEGF were both similarly expressed in perforated disc tissues. CONCLUSIONS: ChM-1 may play a role in the regulation of TMJ remodeling by preventing blood vessel invasion of the cartilage, thereby maintaining condylar cartilage and disc integrity.
Resumo:
This article attempts to explore the concept of scientific community at the macro-national level in the context of Iran. Institutionalisation of science and its professional growth has been constrained by several factors. The article first conceptualises the notion of science community as found in the literature in the context of Iran, and attempts to map through some indicators. The main focus, however, lies in mapping some institutional problems through empirical research. This was undertaken in 2002–04 in order to analyse the structure of the scientific community in Iran in the ‘exact sciences’ (mathematics, physics, chemistry, biology and earth sciences). The empirical work was done in two complementary perspectives: through a questionnaire and statistical analysis of it, and through semistructured interviews with the researchers. There are number of problems confronting scientists in Iran. Facilities provided by institutions is one of the major problems of research. Another is the tenuous cooperation among scientists. This is reported by most of the researchers, who deplore the lack of cooperation among their group. Relationships are mostly with the Ph.D. students and only marginally with colleagues. Our research shows that the more brilliant the scientists, the more frustrated they are from scientific institutions in Iran. Medium-range researchers seem to be much happier about the scientific institution to which they belong than the brighter scholars. The scientific institutions in Iran seem to be built for the needs of the former rather than the latter. These institutions seem not to play a positive role in the case of the best scientists. On the whole, many ingredients of the scientific community, at least at its inception, are present among Iranian scientists: the strong desire for scientific achievement in spite of personal, institutional and economic problems.
Resumo:
Objective. Previous studies have shown the influence of subchondral bone osteoblasts (SBOs) on phenotypical changes of articular cartilage chondrocytes (ACCs) during the development of osteoarthritis (OA). The molecular mechanisms involved during this process remain elusive, in particular, the signal transduction pathways. The aim of this study was to investigate the in vitro effects of OA SBOs on the phenotypical changes in normal ACCs and to unveil the potential involvement of MAPK signaling pathways during this process. Methods. Normal and arthritic cartilage and bone samples were collected for isolation of ACCs and SBOs. Direct and indirect coculture models were applied to study chondrocyte hypertrophy under the influence of OA SBOs. MAPKs in the regulation of the cell–cell interactions were monitored by phosphorylated antibodies and relevant inhibitors. Results. OA SBOs led to increased hypertrophic gene expression and matrix calcification in ACCs by means of both direct and indirect cell–cell interactions. In this study, we demonstrated for the first time that OA SBOs suppressed p38 phosphorylation and induced ERK-1/2 signal phosphorylation in cocultured ACCs. The ERK-1/2 pathway inhibitor PD98059 significantly attenuated the hypertrophic changes induced by conditioned medium from OA SBOs, and the p38 inhibitor SB203580 resulted in the up-regulation of hypertrophic genes in ACCs. Conclusion. The findings of this study suggest that the pathologic interaction of OA SBOs and ACCs is mediated via the activation of ERK-1/2 phosphorylation and deactivation of p38 phosphorylation, resulting in hypertrophic differentiation of ACCs.
Resumo:
Dental pulp cells (DPCs) are capable of differentiating into odontoblasts that secrete reparative dentin after pulp injury. The molecular mechanisms governing reparative dentinogenesis are yet to be fully understood. Here we investigated the differential protein profile of human DPCs undergoing odontogenic induction for 7 days. Using two-dimensional differential gel electrophoresis coupled with matrix-assisted laser adsorption ionization time of flight mass spectrometry, 2 3 protein spots related to the early odontogenic differentiation were identified. These proteins included cytoskeleton proteins, nuclear proteins, cell membrane-bound molecules, proteins involved in matrix synthesis, and metabolic enzymes. The expression of four identified proteins, which were heteronuclear ribonuclear proteins C, annexin VI, collagen type VI, and matrilin-2, was confirmed by Western blot and real-time realtime polymerase chain reaction analyses. This study generated a proteome reference map during odontoblast- like differentiation of human DPCs, which will be valuable to better understand the underlying molecular mechanisms in odontoblast-like differentiation.
Resumo:
Stem cells are unprogrammed cells which possess plasticity and self renewal capability. The term of stem cell was first used to describe cells committed to give rise to germline cells, and to describe proposed progenitor cells of the blood system [1]. A unique feature of stem cell is to remain quiescent in vivo in an uncommitted state. They serve as reservoir or natural support system to replenish cells lost due to disease, injury or aging. When triggered by appropriate signals these cells divide and may become specialized, committed cells; however being able to control this differentiation process still remains one of the biggest challenge in stem cell research [2]. The cell division of stem cells is a distinct aspect of their biology, since this division may be either symmetric or asymmetric. Symmetric division takes place when the stem cells divides and forms two new daughter cells. Asymmetric division is thought to take place only under certain conditions where stem cells divides and gives rise to a daughter cell which remains primitive and does not proliferate, and one committed progenitor cell, which heads down a path of differentiation. Asymmetric division of stem cells helps reparative process, and also ensures that the stem cells pool does not decrease, whereas symmetric division is responsible for stem cells undergoing self renewal and proliferation. The factors which prompt the stem cells to undergo asymmetric division are, however, not well understood, but it is clear that the delicate balance between the self renewal and differentiation is what maintains tissue homeostasis.
Resumo:
The ultimate goal of periodontal therapy is to regenerate periodontal supporting tissues, but this is hard to achieve as the results of periodontal techniques for regeneration are clinically unpredictable. Stem cells owing to their plasticity and proliferation potential provides a new paradigm for periodontal regeneration. Stem cells from mesenchyme can self renew and generate new dental tissues (including dentin and cementum), alveolar bone and periodontal ligament, and thus they have great potential in periodontal regeneration. This chapter presents an insight into mesenchymal stem cells and their potential use in periodontal regeneration. In this chapter the cellular and molecular biology in periodontal regeneration will be introduced, followed by a range of conventional surgical procedures for periodontal regeneration will be discussed. Mesenchymal stem cells applied in regenerated periodontal tissue and their biological characterizations in vitro will be also introduced. Lastly, the use of mesenchymal stem cell to repair periodontal tissues in large animal models will be also reviewed.
Resumo:
Stimulated human whole saliva (WS) was used to study the dynamics of papain hydrolysis at defined pH, ionic strength and temperature with the view of reducing an acquired pellicle. A quartz crystal microbalance with dissipation (QCM-D) was used to monitor the changes in frequency due to enzyme hydrolysis of WS films and the hydrolytic parameters were calculated using an empirical model. The morphological and conformational changes of the salivary films before and after enzymatic hydrolysis were characterized by atomic force microscopy (AFM) imaging and grazing angle infrared spectroscopy (GA-FTIR) spectra, respectively. The characteristics of papain hydrolysis of WS films were pH-, ionic strength- and temperature-dependent. The WS films were partially removed by the action of enzyme, resulting thinner and smoother surfaces. The IR data suggested that hydrolysis-induced deformation did not occur onto the remnants salivary films. The processes of papain hydrolysis of WS films can be controlled by properly regulating pH, ionic strength and temperature.
Resumo:
Calcium (Ca) is the main element of most pulp capping materials and plays an essential role in mineralization. Different pulp capping materials can release various concentrations of Ca ions leading to different clinical outcomes. The purpose of this study was to investigate the effects of various concentrations of Ca ions on the growth and osteogenic differentiation of human dental pulp cells (hDPCs). Different concentrations of Ca ions were added to growth culture medium and osteogenic inductive culture medium. A Cell Counting Kit-8 (CCK-8) was used to determine the proliferation of hDPCs in growth culture medium. Osteogenic differentiation and mineralization were measured by alkaline phosphatase (ALP) assay, Alizarin red S/von kossa staining, calcium content quantitative assay. The selected osteogenic differentiation markers were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Within the range of 1.8–16.2 mM, increased concentrations of Ca ions had no effect on cell proliferation, but led to changes in osteogenic differentiation. It was noted that enhanced mineralized matrix nodule formation was found in higher Ca ions concentrations; however, ALP activity and gene expression were reduced. qRT-PCR results showed a trend towards down-regulated mRNA expression of type I collagen (COL1A2) and Runx2 at elevated concentrations of Ca ions, whereas osteopontin (OPN) and osteocalcin (OCN) mRNA expression was significantly up-regulated. Ca ions content in the culture media can significantly influence the osteogenic properties of hDPCs, indicating the importance of optimizing Ca ions release from dental pulp capping materials in order to achieve desirable clinical outcomes.
Resumo:
tRNA-derived RNA fragments (tRFs) are 19mer small RNAs that associate with Argonaute (AGO) proteins in humans. However, in plants, it is unknown if tRFs bind with AGO proteins. Here, using public deep sequencing libraries of immunoprecipitated Argonaute proteins (AGO-IP) and bioinformatics approaches, we identified the Arabidopsis thaliana AGO-IP tRFs. Moreover, using three degradome deep sequencing libraries, we identified four putative tRF targets. The expression pattern of tRFs, based on deep sequencing data, was also analyzed under abiotic and biotic stresses. The results obtained here represent a useful starting point for future studies on tRFs in plants. © 2013 Loss-Morais et al.; licensee BioMed Central Ltd.
Resumo:
A major group of murine NK T (NKT) cells express an invariant Vα14Jα18 TCR α-chain specific for glycolipid Ags presented by CD1d. Murine Vα14Jα18+ account for 30–50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Vα24Vβ11+ NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3+ cells) and blood (0.02%). In contrast to those in blood, most hepatic Vα24+ NKT cells express the Vβ11 chain. They include CD4+, CD8+, and CD4−CD8− cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Vα24+ T cells are potent producers of IFN-γ and TNF-α, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, α-galactosylceramide. Vα24+Vβ11+ cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-γ in response to α-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.
Resumo:
This chapter describes physical and environmental determinants of the health of Australians, providing a background to the development of successful public health activity. Health determinants are the biomedical, genetic, behavioural, socio-economic and environmental factors that impact on health and wellbeing. These determinants can be influenced by interventions and by resources and systems (AIHW 2006). Many factors combine to affect the health of individuals and communities. People’s circumstances and the environment determine whether the population is healthy or not. Factors such as where people live, the state of their environment, genetics, their education level and income, and their relationships with friends and family, all are likely to impact on their health. The determinants of population health reflect the context of people’s lives; however, people are very unlikely to be able to control many of these determinants (WHO 2007). This chapter and Chapter 6 illustrate how various determinants can relate to, and influence other determinants, as well as health and wellbeing. We believe it is particularly important to provide an understanding of determinants and their relationship to health and illness in order to provide a structure in which a broader conceptualisation of health can be placed. Determinants of health do not exist in isolation from one another. More frequently they work together in a complex system. What is clear to anyone who works in public health is that many factors impact on the health and wellbeing of people. For example, in the next chapter we discuss factors such as living and working conditions, social support, ethnicity and class, income, housing, work stress and the impact of education on the length and quality of people’s lives. In 1974, the influential ‘Lalonde Report’ (Lalonde 1974) described key factors that impact on health status. These factors included lifestyle, environment, human biology and health services. Taking a population health approach builds on the Lalonde Report, and recognises that a range of factors, such as living and working conditions and the distribution of wealth in society, interact to determine the health status of a population. Tackling health determinants has great potential to reduce the burden of disease and promote the health of the general population. In summary, we understand very clearly now that health is determined by the complex interactions between individual characteristics, social and economic factors and physical environments; the entire range of factors that impact on health must be addressed if we are to make significant gains in population health, and focussing interventions on the health of the population or significant sub-populations can achieve important health gains. In 2007, the Australian Government included in the list of National Health Priority Areas the following health issues: cancer control, injury prevention and control, cardiovascular health, diabetes mellitus, mental health, asthma, and arthritis and musculoskeletal conditions. The National Health Priority Areas set the agenda for the Commonwealth, States and Territories, Local Governments and not-for-profit organisations to place attention on those areas considered to be the major foci for action. Many of these health issues are discussed in this chapter and the following chapter.