152 resultados para Biological engineers
em Queensland University of Technology - ePrints Archive
Resumo:
In South and Southeast Asia, postharvest loss causes material waste of up to 66% in fruits and vegetables, 30% in oilseeds and pulses, and 49% in roots and tubers. The efficiency of postharvest equipment directly affects industrial-scale food production. To enhance current processing methods and devices, it is essential to analyze the responses of food materials under loading operations. Food materials undergo different types of mechanical loading during postharvest and processing stages. Therefore, it is important to determine the properties of these materials under different types of loads, such as tensile, compression, and indentation. This study presents a comprehensive analysis of the available literature on the tensile properties of different food samples. The aim of this review was to categorize the available methods of tensile testing for agricultural crops and food materials to investigate an appropriate sample size and tensile test method. The results were then applied to perform tensile tests on pumpkin flesh and peel samples, in particular on arc-sided samples at a constant loading rate of 20 mm min-1. The results showed the maximum tensile stress of pumpkin flesh and peel samples to be 0.535 and 1.45 MPa, respectively. The elastic modulus of the flesh and peel samples was 6.82 and 25.2 MPa, respectively, while the failure modulus values were 14.51 and 30.88 MPa, respectively. The results of the tensile tests were also used to develop a finite element model of mechanical peeling of tough-skinned vegetables. However, to study the effects of deformation rate, moisture content, and texture of the tissue on the tensile responses of food materials, more investigation needs to be done in the future.
Resumo:
Energy efficiency as a concept has gained significant attention over the last few decades, as governments and industries around the world have grappled with issues such as rapid population growth and expanding needs for energy, the cost of supplying infrastructure for growing spikes in peak demand, the finite nature of fossil based energy reserves, and managing transition timeframes for expanding renewable energy supplies. Over the last decade in particular, there has been significant growth in understanding the complexity and interconnectedness of these issues, and the centrality of energy efficiency to the engineering profession. Furthermore, there has been a realisation amongst various government departments and education providers that associated knowledge and skill sets to achieve energy efficiency goals are not being sufficiently developed in vocational or higher education. Within this context, this poster discusses the emergence of a national energy efficiency education agenda in Australia, to support embedding such knowledge throughout the engineering curriculum, and throughout career pathways. In particular, the posterprovides insights into the national priorities for capacity building in Australia, and how this is influencing the engineering education community, from undergraduate education through to postgraduate studies and professional development. The poster is intended to assist in raising awareness about the central role of energy efficiency within engineering, significant initiatives by major government, professional, and training organisations, and the increasing availability of high quality energy efficiency engineering education resources. The authors acknowledge the support for and contributions to this poster by the federal Department of Resources, Energy and Tourism, through members of the national Energy Efficiency Advisory Group for engineering education.
Resumo:
Nature is a school for scientists and engineers. Inherent multiscale structures of biological materials exhibit multifunctional integration. In nature, the lotus, the water strider, and the flying bird evolved different and optimized biological solutions to survive. In this contribution, inspired by the optimized solutions from the lotus leaf with superhydrophobic self-cleaning, the water strider leg with durable and robust superhydrophobicity, and the lightweight bird bone with hollow structures, multifunctional metallic foams with multiscale structures are fabricated, demonstrating low adhesive superhydrophobic self-cleaning, striking loading capacity, and superior repellency towards different corrosive solutions. This approach provides an effective avenue to the development of water strider robots and other aquatic smart devices floating on water. Furthermore, the resultant multifunctional metallic foam can be used to construct an oil/water separation apparatus, exhibiting a high separation efficiency and long-term repeatability. The presented approach should provide a promising solution for the design and construction of other multifunctional metallic foams in a large scale for practical applications in the petro-chemical field. Optimized biological solutions continue to inspire and to provide design idea for the construction of multiscale structures with multifunctional integration. Inspired by the optimized biological solutions from the lotus leaf with superhydrophobic self-cleaning, the water strider leg with durable and robust superhydrophobicity, and the lightweight bird bone with hollow structures, multifunctional metallic foams with multiscale structures are fabricated, demonstrating low adhesive superhydrophobic self-cleaning, striking loading capacity, stable corrosion resistance, and oil/water separation.
Resumo:
The main aim of radiotherapy is to deliver a dose of radiation that is high enough to destroy the tumour cells while at the same time minimising the damage to normal healthy tissues. Clinically, this has been achieved by assigning a prescription dose to the tumour volume and a set of dose constraints on critical structures. Once an optimal treatment plan has been achieved the dosimetry is assessed using the physical parameters of dose and volume. There has been an interest in using radiobiological parameters to evaluate and predict the outcome of a treatment plan in terms of both a tumour control probability (TCP) and a normal tissue complication probability (NTCP). In this study, simple radiobiological models that are available in a commercial treatment planning system were used to compare three dimensional conformal radiotherapy treatments (3D-CRT) and intensity modulated radiotherapy (IMRT) treatments of the prostate. Initially both 3D-CRT and IMRT were planned for 2 Gy/fraction to a total dose of 60 Gy to the prostate. The sensitivity of the TCP and the NTCP to both conventional dose escalation and hypo-fractionation was investigated. The biological responses were calculated using the Källman S-model. The complication free tumour control probability (P+) is generated from the combined NTCP and TCP response values. It has been suggested that the alpha/beta ratio for prostate carcinoma cells may be lower than for most other tumour cell types. The effect of this on the modelled biological response for the different fractionation schedules was also investigated.
Resumo:
Quantitative behaviour analysis requires the classification of behaviour to produce the basic data. In practice, much of this work will be performed by multiple observers, and maximising inter-observer consistency is of particular importance. Another discipline where consistency in classification is vital is biological taxonomy. A classification tool of great utility, the binary key, is designed to simplify the classification decision process and ensure consistent identification of proper categories. We show how this same decision-making tool - the binary key - can be used to promote consistency in the classification of behaviour. The construction of a binary key also ensures that the categories in which behaviour is classified are complete and non-overlapping. We discuss the general principles of design of binary keys, and illustrate their construction and use with a practical example from education research.
Resumo:
Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.
Resumo:
A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL–TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL–TCP in a large animal model of lumbar interbody fusion. Six pigs underwent a 2-level (L3/4; L5/6) anterior lumbar interbody fusion (ALIF) implanted with mPCL–TCP þ 0.6 mg rhBMP-2 as treatment group while four other pigs implanted with autogenous bone graft served as control. Computed tomographic scanning and histology revealed complete defect bridging in all (100%) specimen from the treatment group as early as 3 months. Histological evidence of continuing bone remodeling and maturation was observed at 6 months. In the control group, only partial bridging was observed at 3 months and only 50% of segments in this group showed complete defect bridging at 6 months. Furthermore, 25% of segments in the control group showed evidence of graft fracture, resorption and pseudoarthrosis. In contrast, no evidence of graft fractures, pseudoarthrosis or foreign body reaction was observed in the treatment group. These results reveal that mPCL–TCP scaffolds could act as bone graft substitutes by providing a suitable environment for bone regeneration in a dynamic load bearing setting such as in a porcine model of interbody spine fusion.
Resumo:
Although placing reflective markers on pedestrians’ major joints can make pedestrians more conspicuous to drivers at night, it has been suggested that this “biological motion” effect may be reduced when visual clutter is present. We tested whether extraneous points of light affected the ability of 12 younger and 12 older drivers to see pedestrians as they drove on a closed road at night. Pedestrians wore black clothing alone or with retroreflective markings in four different configurations. One pedestrian walked in place and was surrounded by clutter on half of the trials. Another was always surrounded by visual clutter but either walked in place or stood still. Clothing configuration, pedestrian motion, and driver age influenced conspicuity but clutter did not. The results confirm that even in the presence of visual clutter pedestrians wearing biological motion configurations are recognized more often and at greater distances than when they wear a reflective vest.
Resumo:
This thesis critically analyses sperm donation practices from a child-centred perspective. It examines the effects, both personal and social, of disrupting the unity of biological and social relatedness in families affected by donor conception. It examines how disruption is facilitated by a process of mediation which is detailed using a model provided by Sunderland (2002). This model identifies mediating movements - alienation, translation, re-contextualisation and absorption - which help to explain the powerful and dominating material, and social and political processes which occur in biotechnology, or in reproductive technology in this case. The understanding of such movements and mediation of meanings is inspired by the complementary work of Silverstone (1999) and Sunderland. This model allows for a more critical appreciation of the movement of meaning from previously inalienable aspects of life to alienable products through biotechnology (Sunderland, 2002). Once this mediation in donor conception is subjected to critical examination here, it is then approached from different angles of investigation. The thesis posits that two conflicting notions of the self are being applied to fertility-frustrated adults and the offspring of reproductive interventions. Adults using reproductive interventions receive support to maximise their genetic continuity, but in so doing they create and dismiss the corresponding genetic discontinuity produced for the offspring. The offspring’s kinship and identity are then framed through an experimental postmodernist notion, presenting them as social rather than innate constructs. The adults using the reproductive intervention, on the other hand, have their identity and kinship continuity framed and supported as normative, innate, and based on genetic connection. This use of shifting frameworks is presented as unjust and harmful, creating double standards and a corrosion of kinship values, connection and intelligibility between generations; indeed, it is put forward as adult-centric. The analysis of other forms of human kinship dislocation provided by this thesis explores an under-utilised resource which is used to counter the commonly held opinion that any disruption of social and genetic relatedness for donor offspring is insignificant. The experiences of adoption and the stolen generations are used to inform understanding of the personal and social effects of such kinship disruption and potential reunion for donor offspring. These examples, along with laws governing international human rights, further strengthen the appeal here for normative principles and protections based on collective knowledge and standards to be applied to children of reproductive technology. The thesis presents the argument that the framing and regulation of reproductive technology is excessively influenced by industry providers and users. The interests of these parties collide with and corrode any accurate assessments and protections afforded to the children of reproductive technology. The thesis seeks to counter such encroachments and concludes by presenting these protections, frameworks, and human experiences as resources which can help to address the problems created for the offspring of such reproductive interventions, thereby illustrating why these reproductive interventions should be discontinued.