61 resultados para Beta-catenin
em Queensland University of Technology - ePrints Archive
Resumo:
Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-1/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines.
Resumo:
The cancer stem-cell (CSC) hypothesis suggests that there is a small subset of cancer cells that are responsible for tumor initiation and growth, possessing properties such as indefinite self-renewal, slow replication, intrinsic resistance to chemotherapy and radiotherapy, and an ability to give rise to differentiated progeny. Through the use of xenotransplantation assays, putative CSCs have been identified in many cancers, often identified by markers usually expressed in normal stem cells. This is also the case in lung cancer, and the accumulated data on side population cells, CD133, CD166, CD44 and ALDH1 are beginning to clarify the true phenotype of the lung cancer stem cell. Furthermore, it is now clear that many of the pathways of normal stem cells, which guide cellular proliferation, differentiation, and apoptosis are also prominent in CSCs; the Hedgehog (Hh), Notch, and Wnt signaling pathways being notable examples. The CSC hypothesis suggests that there is a small reservoir of cells within the tumor, which are resistant to many standard therapies, and can give rise to new tumors in the form of metastases or relapses after apparent tumor regression. Therapeutic interventions that target CSC pathways are still in their infancy and clinical data of their efficacy remain limited. However Smoothened inhibitors, gamma-secretase inhibitors, anti-DLL4 antagonists, Wnt antagonists, and CBP/β-catenin inhibitors have all shown promising anticancer effects in early studies. The evidence to support the emerging picture of a lung cancer CSC phenotype and the development of novel therapeutic strategies to target CSCs are described in this review.
Resumo:
Objective: To compare proteins related to Alzheimer disease ( AD) in the frontal cortex and cerebellum of subjects with early-onset AD (EOAD) with or without presenilin 1 (PS1) mutations with sporadic late-onset AD ( LOAD) and nondemented control subjects. Methods: Immunohistochemistry, immunoblot analysis, and ELISA were used to detect and assess protein levels in brain. Results: In EOAD and to a lesser extent in LOAD, there was increased amyloid beta (Abeta) deposition (by immunohistochemistry), increased soluble Abeta (by immunoblot analysis), and specific increases in Abeta(40) and Abeta(42) ( by ELISA) in the frontal cortex and, in some cases, in the cerebellum. Surprisingly, immunoblot analysis revealed reduced levels of PS1 in many of the subjects with EOAD with or without PS1 mutations. In those PS1 mutation-bearing subjects with the highest Abeta, PS1 was barely, if at all, detectable. This decrease in PS1 was specific and not attributable solely to neuronal loss because amyloid precursor protein (APP) and the PS1-interacting protein beta-catenin levels were unchanged. Conclusions: This study shows that in the frontal cortex and cerebellum from Alzheimer disease patients harboring certain presenilin 1 mutations, high levels of amyloid beta are associated with low levels of presenilin 1. The study provides the premise for further investigation of mechanisms underlying the downregulation of presenilin 1, which may have considerable pathogenic and therapeutic relevance.
Resumo:
The regeneration of periodontal tissues to cure periodontitis remains a medical challenge. Therefore, it is of great importance to develop a novel biomaterial that could induce cementogenesis and osteogenesis in periodontal tissue engineering. Calcium silicate (Ca–Si) based ceramics have been found to be potential bioactive materials due to their osteostimulatory effect. Recently, it is reported that zirconium modified calcium-silicate-based (Ca3ZrSi2O9) ceramics stimulate cell proliferation and osteogenic differentiation of osteoblasts. However, it is unknown whether Ca3ZrSi2O9 ceramics possess specific cementogenic stimulation for human periodontal ligament cells (hPDLCs) in periodontal tissue regeneration in vitro. The purpose of this study was to investigate whether Ca3ZrSi2O9 ceramic disks and their ionic extracts could stimulate cell growth and cementogenic/osteogenic differentiation of hPDLCs; the possible molecular mechanism involved in this process was also explored by investigating the Wnt/β-catenin signalling pathway of hPDLCs. Our results showed that Ca3ZrSi2O9 ceramic disks supported cell adhesion, proliferation and significantly up-regulated relative alkaline phosphatase (ALP) activity, cementogenic/osteogenic gene expression (CEMP1, CAP, ALP and OPN) and Wnt/β-catenin signalling pathway-related genes (AXIN2 and CTNNB) for hPDLCs, compared to that of β-tricalcium phosphate (β-TCP) bioceramic disks and blank controls. The ionic extracts from Ca3ZrSi2O9 powders also significantly enhanced relative ALP activity, cementogenic/osteogenic and Wnt/β-catenin-related gene expression of hPDLCs. The present results demonstrate that Ca3ZrSi2O9 ceramics are capable of stimulating cementogenic/osteogenic differentiation of hPDLCs possibly via activation of the Wnt/β-catenin signalling pathway, suggesting that Ca3ZrSi2O9 ceramics have the potential to be used for periodontal tissue regeneration.
Resumo:
A new strategy has emerged to improve healing of bone defects using exogenous glycosaminoglycans by increasing the effectiveness of bone-anabolic growth factors. Wnt ligands play an important role in bone formation. However, their functional interactions with heparan sulfate/heparin have only been investigated in non-osseous tissues. Our study now shows that the osteogenic activity of Wnt3a is cooperatively stimulated through physical interactions with exogenous heparin. N-Sulfation and to a lesser extent O-sulfation of heparin contribute to the physical binding and optimal co-stimulation of Wnt3a. Wnt3a-heparin signaling synergistically increases osteoblast differentiation with minimal effects on cell proliferation. Thus, heparin selectively reduces the effective dose of Wnt3a needed to elicit osteogenic, but not mitogenic responses. Mechanistically, Wnt3a-heparin signaling strongly activates the phosphoinositide 3-kinase/Akt pathway and requires the bone-related transcription factor RUNX2 to stimulate alkaline phosphatase activity, which parallels canonical beta-catenin signaling. Collectively, our findings establish the osteo-inductive potential of a heparin-mediated Wnt3a-phosphoinositide 3-kinase/Akt-RUNX2 signaling network and suggest that heparan sulfate supplementation may selectively reduce the therapeutic doses of peptide factors required to promote bone formation.
Resumo:
PURPOSE Colorectal signet-ring cell carcinoma (SRCC) is rare, and very little detailed information on the molecular biology of the disease is available. METHODS The literature on the clinical, pathological and, in particular, the molecular biology of this rare entity was critically reviewed. The reviewed articles take into account a total of 1,817 cases of SRCC, but only 143 cases have molecular data available. The characteristics of two patients with colorectal SRCC were also discussed. RESULTS Colorectal SRCC mostly occurs in younger patients, is larger and has different site predilection compared with conventional colorectal adenocarcinoma. It can occur as one of the synchronous cancers in the colorectum. The cancer is usually diagnosed at advanced stages because of the late manifestation of symptoms, and aggressive treatment strategy is required. Limited reports in the literature have shown that the variant of colorectal cancer demonstrated a different pattern of genetic alterations of common growth kinase-related oncogenes (K-ras, BRAF), tumour suppressor genes (p53, p16), gene methylation and cell adhesion-related genes related to the Wingless signalling pathway (E-cadherin and beta-catenin) from conventional colorectal adenocarcinoma. Colorectal SRCC also showed high expression of mucin-related genes and genes related to the gastrointestinal system. There was also a higher prevalence of microsatellite instability-high tumours and low Cox-2 expression in colorectal SRCC as opposed to conventional adenocarcinoma. CONCLUSIONS Colorectal SRCC has unique molecular pathological features. The unique molecular profiles in SRCC may provide molecular-based improvements to patient management in colorectal SRCC.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated approximately 2,000, approximately 3,700 and approximately 9,500 SNPs explained approximately 21%, approximately 24% and approximately 29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
Protein phosphorylation regulates a wide variety of cellular processes. Thus, we hypothesize that single-nucleotide polymorphisms (SNPs) that may modulate protein phosphorylation could affect osteoporosis risk. Based on a previous conventional genome-wide association (GWA) study, we conducted a three-stage meta-analysis targeting phosphorylation-related SNPs (phosSNPs) for femoral neck (FN)-bone mineral density (BMD), total hip (HIP)-BMD, and lumbar spine (LS)-BMD phenotypes. In stage 1, 9593 phosSNPs were meta-analyzed in 11,140 individuals of various ancestries. Genome-wide significance (GWS) and suggestive significance were defined by α = 5.21 × 10–6 (0.05/9593) and 1.00 × 10–4, respectively. In stage 2, nine stage 1–discovered phosSNPs (based on α = 1.00 × 10–4) were in silico meta-analyzed in Dutch, Korean, and Australian cohorts. In stage 3, four phosSNPs that replicated in stage 2 (based on α = 5.56 × 10–3, 0.05/9) were de novo genotyped in two independent cohorts. IDUA rs3755955 and rs6831280, and WNT16 rs2707466 were associated with BMD phenotypes in each respective stage, and in three stages combined, achieving GWS for both FN-BMD (p = 8.36 × 10–10, p = 5.26 × 10–10, and p = 3.01 × 10–10, respectively) and HIP-BMD (p = 3.26 × 10–6, p = 1.97 × 10–6, and p = 1.63 × 10–12, respectively). Although in vitro studies demonstrated no differences in expressions of wild-type and mutant forms of IDUA and WNT16B proteins, in silico analyses predicts that WNT16 rs2707466 directly abolishes a phosphorylation site, which could cause a deleterious effect on WNT16 protein, and that IDUA phosSNPs rs3755955 and rs6831280 could exert indirect effects on nearby phosphorylation sites. Further studies will be required to determine the detailed and specific molecular effects of these BMD-associated non-synonymous variants. © 2015 American Society for Bone and Mineral Research.
Resumo:
Introduction: Osteoporosis is the commonest metabolic bone disease worldwide. The clinical hallmark of osteoporosis is low trauma fracture, with the most devastating being hip fracture, resulting in significant effects on both morbidity and mortality. Sources of data: Data for this review have been gathered from the published literature and from a range of web resources. Areas of agreement: Genome-wide association studies in the field of osteoporosis have led to the identification of a number of loci associated with both bone mineral density and fracture risk and further increased our understanding of disease. Areas of controversy: The early strategies for mapping osteoporosis disease genes reported only isolated associations, with replication in independent cohorts proving difficult. Neither candidate gene or linkage studies showed association at genome-wide level of significance. Growing points: The advent of massive parallel sequencing technologies has proved extremely successful in mapping monogenic diseases and thus leading to the utilization of this new technology in complex disease genetics. Areas timely for developing research: The identification of novel genes and pathways will potentially lead to the identification of novel therapeutic options for patients with osteoporosis. © 2014 The Author.
Resumo:
Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. © 2015 The Authors.
Resumo:
The use of animal sera for the culture of therapeutically important cells impedes the clinical use of the cells. We sought to characterize the functional response of human mesenchymal stem cells (hMSCs) to specific proteins known to exist in bone tissue with a view to eliminating the requirement of animal sera. Insulin-like growth factor-I (IGF-I), via IGF binding protein-3 or -5 (IGFBP-3 or -5) and transforming growth factor-beta 1 (TGF-beta(1)) are known to associate with the extracellular matrix (ECM) protein vitronectin (VN) and elicit functional responses in a range of cell types in vitro. We found that specific combinations of VN, IGFBP-3 or -5, and IGF-I or TGF-beta(1) could stimulate initial functional responses in hMSCs and that IGF-I or TGF-beta(1) induced hMSC aggregation, but VN concentration modulated this effect. We speculated that the aggregation effect may be due to endogenous protease activity, although we found that neither IGF-I nor TGF-beta(1) affected the functional expression of matrix metalloprotease-2 or -9, two common proteases expressed by hMSCs. In summary, combinations of the ECM and growth factors described herein may form the basis of defined cell culture media supplements, although the effect of endogenous protease expression on the function of such proteins requires investigation.