39 resultados para Baviera, Massimiliano Enrico de, Arzobispo de Colonia
em Queensland University of Technology - ePrints Archive
Resumo:
The research on project learning has recognised the significance of knowledge transfer in project based organisations (PBOs). Effective knowledge transfer across projects avoids reinventions, enhances knowledge creation and saves lots of time that is crucial in project environment. In order to facilitate knowledge transfer, many PBOs have invested lots of financial and human resources to implement IT-based knowledge repository. However, some empirical studies found that employees would rather turn for knowledge to colleagues despite their ready access to IT-based knowledge repository. Therefore, it is apparent that social networks play a pivotal role in the knowledge transfer across projects. Some scholars attempt to explore the effect of network structure on knowledge transfer and performance, however, focused only on egocentric networks and the groups’ internal social networks. It has been found that the project’s external social network is also critical, in that the team members can not handle critical situations and accomplish the projects on time without the assistance and knowledge from external sources. To date, the influence of the structure of a project team’s internal and external social networks on project performance, and the interrelation between both networks are barely known. In order to obtain such knowledge, this paper explores the interrelation between the structure of a project team’s internal and external social networks, and their effect on the project team’s performance. Data is gathered through survey questionnaire distributed online to respondents. Collected data is analysed applying social network analysis (SNA) tools and SPSS. The theoretical contribution of this paper is the knowledge of the interrelation between the structure of a project team’s internal and external social networks and their influence on the project team’s performance. The practical contribution lies in the guideline to be proposed for constructing the structure of project team’s internal and external social networks.
Resumo:
This study of photocatalytic oxidation of phenol over titanium dioxide films presents a method for the evaluation of true reaction kinetics. A flat plate reactor was designed for the specific purpose of investigating the influence of various reaction parameters, specifically photocatalytic film thickness, solution flow rate (1–8 l min−1), phenol concentration (20, 40 and 80 ppm), and irradiation intensity (70.6, 57.9, 37.1and 20.4 W m−2), in order to further understand their impact on the reaction kinetics. Special attention was given to the mass transfer phenomena and the influence of film thickness. The kinetics of phenol degradation were investigated with different irradiation levels and initial pollutant concentration. Photocatalytic degradation experiments were performed to evaluate the influence of mass transfer on the reaction and, in addition, the benzoic acid method was applied for the evaluation of mass transfer coefficient. For this study the reactor was modelled as a batch-recycle reactor. A system of equations that accounts for irradiation, mass transfer and reaction rate was developed to describe the photocatalytic process, to fit the experimental data and to obtain kinetic parameters. The rate of phenol photocatalytic oxidation was described by a Langmuir–Hinshelwood type law that included competitive adsorption and degradation of phenol and its by-products. The by-products were modelled through their additive effect on the solution total organic carbon.
Resumo:
Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes.
Resumo:
With the large diffusion of Business Process Managemen (BPM) automation suites, the possibility of managing process-related risks arises. This paper introduces an innovative framework for process-related risk management and describes a working implementation realized by extending the YAWL system. The framework covers three aspects of risk management: risk monitoring, risk prevention, and risk mitigation. Risk monitoring functionality is provided using a sensor-based architecture, where sensors are defined at design time and used at run-time for monitoring purposes. Risk prevention functionality is provided in the form of suggestions about what should be executed, by who, and how, through the use of decision trees. Finally, risk mitigation functionality is provided as a sequence of remedial actions (e.g. reallocating, skipping, rolling back of a work item) that should be executed to restore the process to a normal situation.
Resumo:
Process-aware information systems, ranging from generic workflow systems to dedicated enterprise information systems, use work-lists to offer so-called work items to users. In real scenarios, users can be confronted with a very large number of work items that stem from multiple cases of different processes. In this jungle of work items, users may find it hard to choose the right item to work on next. The system cannot autonomously decide which is the right work item, since the decision is also dependent on conditions that are somehow outside the system. For instance, what is “best” for an organisation should be mediated with what is “best” for its employees. Current work-list handlers show work items as a simple sorted list and therefore do not provide much decision support for choosing the right work item. Since the work-list handler is the dominant interface between the system and its users, it is worthwhile to provide an intuitive graphical interface that uses contextual information about work items and users to provide suggestions about prioritisation of work items. This paper uses the so-called map metaphor to visualise work items and resources (e.g., users) in a sophisticated manner. Moreover, based on distance notions, the work-list handler can suggest the next work item by considering different perspectives. For example, urgent work items of a type that suits the user may be highlighted. The underlying map and distance notions may be of a geographical nature (e.g., a map of a city or office building), but may also be based on process designs, organisational structures, social networks, due dates, calendars, etc. The framework proposed in this paper is generic and can be applied to any process-aware information system. Moreover, in order to show its practical feasibility, the paper discusses a full-fledged implementation developed in the context of the open-source workflow environment YAWL, together with two real examples stemming from two very different scenarios. The results of an initial usability evaluation of the implementation are also presented, which provide a first indication of the validity of the approach.
Resumo:
Even though titanium dioxide photocatalysis has been promoted as a leading green technology for water purification, many issues have hindered its application on a large commercial scale. For the materials scientist the main issues have centred the synthesis of more efficient materials and the investigation of degradation mechanisms; whereas for the engineers the main issues have been the development of appropriate models and the evaluation of intrinsic kinetics parameters that allow the scale up or re-design of efficient large-scale photocatalytic reactors. In order to obtain intrinsic kinetics parameters the reaction must be analysed and modelled considering the influence of the radiation field, pollutant concentrations and fluid dynamics. In this way, the obtained kinetic parameters are independent of the reactor size and configuration and can be subsequently used for scale-up purposes or for the development of entirely new reactor designs. This work investigates the intrinsic kinetics of phenol degradation over titania film due to the practicality of a fixed film configuration over a slurry. A flat plate reactor was designed in order to be able to control reaction parameters that include the UV irradiance, flow rates, pollutant concentration and temperature. Particular attention was paid to the investigation of the radiation field over the reactive surface and to the issue of mass transfer limited reactions. The ability of different emission models to describe the radiation field was investigated and compared to actinometric measurements. The RAD-LSI model was found to give the best predictions over the conditions tested. Mass transfer issues often limit fixed film reactors. The influence of this phenomenon was investigated with specifically planned sets of benzoic acid experiments and with the adoption of the stagnant film model. The phenol mass transfer coefficient in the system was calculated to be km,phenol=8.5815x10-7Re0.65(ms-1). The data obtained from a wide range of experimental conditions, together with an appropriate model of the system, has enabled determination of intrinsic kinetic parameters. The experiments were performed in four different irradiation levels (70.7, 57.9, 37.1 and 20.4 W m-2) and combined with three different initial phenol concentrations (20, 40 and 80 ppm) to give a wide range of final pollutant conversions (from 22% to 85%). The simple model adopted was able to fit the wide range of conditions with only four kinetic parameters; two reaction rate constants (one for phenol and one for the family of intermediates) and their corresponding adsorption constants. The intrinsic kinetic parameters values were defined as kph = 0.5226 mmol m-1 s-1 W-1, kI = 0.120 mmol m-1 s-1 W-1, Kph = 8.5 x 10-4 m3 mmol-1 and KI = 2.2 x 10-3 m3 mmol-1. The flat plate reactor allowed the investigation of the reaction under two different light configurations; liquid and substrate side illumination. The latter of particular interest for real world applications where light absorption due to turbidity and pollutants contained in the water stream to be treated could represent a significant issue. The two light configurations allowed the investigation of the effects of film thickness and the determination of the catalyst optimal thickness. The experimental investigation confirmed the predictions of a porous medium model developed to investigate the influence of diffusion, advection and photocatalytic phenomena inside the porous titania film, with the optimal thickness value individuated at 5 ìm. The model used the intrinsic kinetic parameters obtained from the flat plate reactor to predict the influence of thickness and transport phenomena on the final observed phenol conversion without using any correction factor; the excellent match between predictions and experimental results provided further proof of the quality of the parameters obtained with the proposed method.
Resumo:
This paper presents Capital Music, a mobile application enabling real-time sharing of song choices with collocated urban dwellers. Due to the real-time, location-based peer-to-peer approach of the application, a user experience study was performed utilising the Wizard of Oz method. The study provides insight into how sharing non-privacy sensitive but personal data in an anonymous way can influence the user experience of people in public urban places. We discuss the findings in relation to how Capital Music influences the process of “cocooning” in public urban places, the practice of designing anonymous interactions between collocated strangers, and how the sharing of song choices can create a sense of commonality between anonymous users in the urban space. The outcomes of this study are relevant for future location-based social networking applications that aim to create interactions between collocated strangers.
Resumo:
As ambient computing blends into the fabric of the modern urban environment developing a positive interplay between people, places, and technology to create enlivened, interactive cities becomes a necessary priority in how we imagine, understand, design, and develop cities. Designing technology for art, culture and gastronomic experiences, that are rich in community, can provide the means for collaborative action to (re)create cities that are lively, engaging, and promote a sense of well being as well as belonging.
Resumo:
This paper proposes a technique that supports process participants in making risk-informed decisions, with the aim to reduce the process risks. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we prompt the participant with the expected risk that a given fault will occur given the particular input. These risks are predicted by traversing decision trees generated from the logs of past process executions and considering process data, involved resources, task durations and contextual information like task frequencies. The approach has been implemented in the YAWL system and its effectiveness evaluated. The results show that the process instances executed in the tests complete with substantially fewer faults and with lower fault severities, when taking into account the recommendations provided by our technique.
Resumo:
Objective: Menopause is the consequence of exhaustion of the ovarian follicular pool. AMH, an indirect hormonal marker of ovarian reserve, has been recently proposed as a predictor for age at menopause. Since BMI and smoking status are relevant independent factors associated with age at menopause we evaluated whether a model including all three of these variables could improve AMH-based prediction of age at menopause. Methods: In the present cohort study, participants were 375 eumenorrheic women aged 19–44 years and a sample of 2,635 Italian menopausal women. AMH values were obtained from the eumenorrheic women. Results: Regression analysis of the AMH data showed that a quadratic function of age provided a good description of these data plotted on a logarithmic scale, with a distribution of residual deviates that was not normal but showed significant leftskewness. Under the hypothesis that menopause can be predicted by AMH dropping below a critical threshold, a model predicting menopausal age was constructed from the AMH regression model and applied to the data on menopause. With the AMH threshold dependent on the covariates BMI and smoking status, the effects of these covariates were shown to be highly significant. Conclusions: In the present study we confirmed the good level of conformity between the distributions of observed and AMH-predicted ages at menopause, and showed that using BMI and smoking status as additional variables improves AMH-based prediction of age at menopause.