2 resultados para Batroxobin:2497
em Queensland University of Technology - ePrints Archive
Resumo:
In this paper, we analyze the SHAvite-3-512 hash function, as proposed and tweaked for round 2 of the SHA-3 competition. We present cryptanalytic results on 10 out of 14 rounds of the hash function SHAvite-3-512, and on the full 14 round compression function of SHAvite-3-512. We show a second preimage attack on the hash function reduced to 10 rounds with a complexity of 2497 compression function evaluations and 216 memory. For the full 14-round compression function, we give a chosen counter, chosen salt preimage attack with 2384 compression function evaluations and 2128 memory (or complexity 2448 without memory), and a collision attack with 2192 compression function evaluations and 2128 memory.
Resumo:
Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.