112 resultados para Ball of Horrors

em Queensland University of Technology - ePrints Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Step was a wearable artwork consisting of a pair of embroidered foot bandages and an actuator ‘cushion’ embedded with 15 electromechanical actuator pistons. The bandage was embedded with woven, soft and flexible fabric sensors - interconnected with metallic connecting threads, fasteners and a wireless interface (in a final form). When wrapped around a foot and lower leg the sensors sat on the ball of the toes and heel. This ‘wearable interface’ was then connected wirelessly to a soft sculptural form, which employed actuators to tap gently in response to the qualities of the walk detected by the soft sensors. In this way the ‘tread qualities’ of the walker could then be felt by someone else holding this device against their stomach – thereby allowing pairs of participants to ‘feel’ the tactile qualities of the other's walk. The work was presented both as a working object and via a short videorecorded performance.----- In Step generated innovative new approaches to interface and sensor embedded clothing/footware whilst also creating an evocative vehicle to comment upon contemporary Post Colonial theories of weight and groundedness – particularly the psycho-geographical ‘separation’ from the landscape that inspired Paul Carter’s “environmentally grounded poetics”. The work’s final form also suggested critical new directions for responsive clothing and footwear for the emerging genre of smart textiles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A trip was undertaken to look at concerns of Public Works and Main Roads Departments of Queensland. David Paterson and Wayne Ganther from CSIRO travelled to the Sunshine Coast with Alan Carse of Queensland Department of Main Roads and Michael Ball of Queensland Department of Public Works. We were also joined for part of the visits by Ed Bowers of QBuild which is a commercial unit of Public Works responsible for maintenance of Public Works. During the trip we visited a bridge on the David Low Way at Sunrise Beach near Noosa. This bridge was in a serve marine environment with high salt content in the concrete and corrosion of the galvanised guardrails and barriers. Also the foreshore at Coolum was visited and the use of stainless steel was examined. This is discussed in this report. Most problems stemmed from incorrect specification due to lack of awareness of the severity of the environment. The companion report Visit to Schools Report 2002-059-B No 7. covers the visit to four schools north of Caloundra.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural changes in intercalated kaolinite after wet ball-milling were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), specific surface area (SSA) and Fourier Transform Infrared spectroscopy (FTIR). The X-ray diffraction pattern at room temperature indicated that the intercalation of potassium acetate into kaolinite causes an increase of the basal spacing from 0.718 to 1.42 nm, and with the particle size reduction, the surface area increased sharply with the intercalation and delamination by ball-milling. The wet ball-milling kaolinite after intercalation did not change the structural order, and the particulates have high aspect ratio according SEM images.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bearing damage in modern inverter-fed AC drive systems is more common than in motors working with 50 or 60 Hz power supply. Fast switching transients and common mode voltage generated by a PWM inverter cause unwanted shaft voltage and resultant bearing currents. Parasitic capacitive coupling creates a path to discharge current in rotors and bearings. In order to analyze bearing current discharges and their effect on bearing damage under different conditions, calculation of the capacitive coupling between the outer and inner races is needed. During motor operation, the distances between the balls and races may change the capacitance values. Due to changing of the thickness and spatial distribution of the lubricating grease, this capacitance does not have a constant value and is known to change with speed and load. Thus, the resultant electric field between the races and balls varies with motor speed. The lubricating grease in the ball bearing cannot withstand high voltages and a short circuit through the lubricated grease can occur. At low speeds, because of gravity, balls and shaft voltage may shift down and the system (ball positions and shaft) will be asymmetric. In this study, two different asymmetric cases (asymmetric ball position, asymmetric shaft position) are analyzed and the results are compared with the symmetric case. The objective of this paper is to calculate the capacitive coupling and electric fields between the outer and inner races and the balls at different motor speeds in symmetrical and asymmetrical shaft and balls positions. The analysis is carried out using finite element simulations to determine the conditions which will increase the probability of high rates of bearing failure due to current discharges through the balls and races.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Use of ball projection machines in the acquisition of interceptive skill has recently been questioned. The use of projection machines in developmental and elite fast ball sports programmes is not a trivial issue, since they play a crucial role in reducing injury incidence in players and coaches. A compelling challenge for sports science is to provide theoretical principles to guide how and when projection machines might be used for acquisition of ball skills and preparation for competition in developmental and elite sport performance programmes. Here, we propose how principles from an ecological dynamics theoretical framework could be adopted by sports scientists, pedagogues and coaches to underpin the design of interventions, practice and training tasks, including the use of hybrid video-projection technologies. The assessment of representative learning design during practice may provide ways to optimize developmental programmes in fast ball sports and inform the principled use of ball projection machines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Performance of locomotor pointing tasks (goal-directed locomotion) in sport is typically constrained by dynamic factors, such as positioning of opponents and objects for interception. In the team sport of association football, performers have to coordinate their gait with ball displacement when dribbling and when trying to prevent opponent interception when running to kick a ball. This thesis comprises two studies analysing the movement patterns during locomotor pointing of eight experienced youth football players under static and dynamic constraints by manipulating levels of ball displacement (ball stationary or moving) and defensive pressure (defenders absent, or positioned near or far during performance). ANOVA with repeated measures was used to analyse effects of these task constraints on gait parameters during the run-up and cross performance sub-phase. Experiment 1 revealed outcomes consistent with previous research on locomotor pointing. When under defensive pressure, participants performed the run-up more quickly, concurrently modifying footfall placements relative to the ball location over trials. In experiment 2 players coordinated their gait relative to a moving ball significantly differently when under defensive pressure. Despite no specific task instructions being provided beforehand, context dependent constraints interacted to influence footfall placements over trials and running velocity of participants in different conditions. Data suggest that coaches need to manipulate task constraints carefully to facilitate emergent movement behaviours during practice in team games like football.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated effects of defensive pressure on running velocity in footballers during the approach to kick a stationary football. Approach velocity and ball speed/accuracy data were recorded from eight football youth academy participants (15.25, SD=0.46 yrs). Participants were required to run to a football to cross it to a receiver to score against a goal-keeper. Defensive pressure was manipulated across three counterbalanced conditions: defender-absent (DA); defender-far (DF) and defender-near (DN). Pass accuracy (percentages of a total of 32 trials with 95% confidence limits in parenthesis) did not significantly reduce under changing defensive pressure: DA, 78% (55–100%); DF, 78% (61–96%); DN, 59% (40–79%). Ball speed (m·s−1) significantly reduced as defensive pressure was included and increased: DA, 23.10 (22.38–23.83); DF, 20.40 (19.69–21.11); DN, 19.22 (18.51–19.93). When defensive pressure was introduced, average running velocity of attackers did not change significantly: DA versus DF (m·s−1), 5.40 (5.30–5.51) versus 5.41 (5.34–5.48). Scaling defender starting positions closer to the start position of the attacker (DN) significantly increased average running velocity relative to the DA and DF conditions, 5.60 (5.50–5.71). In the final approach footfalls, all conditions significantly differed: DA, 5.69 (5.35–6.03); DF, 6 .22 (5.93–6.50); DN, 6.52 (6.23–6.80). Data suggested that approach velocity is constrained by both presence and initial distance of the defender during task performance. Implications are that the expression of kicking behaviour is specific to a performance context and some movement regulation features will not emerge unless a defender is present as a task constraint in practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This practice-led research project explores how humour can be employed to develop a methodology for examining the socio-political dimensions of contemporary art practice. This research aims to identify and elaborate on how using the evasive strategies and elliptical frameworks associated with ideas of the absurd and nonsense can lead to new ways of understanding the nexus between social, political and cultural practices. This is achieved primarily through an examination of the art practices of Marcel Duchamp, Bruce Nauman, and Martin Kippenberger. These artists contextualise this research because in different ways they all engage with humour as a device to critique conventional notions of how art can be read or understood. Using these strategies the project aims to demonstrate new ways for considering how visual art can use humour to creatively and critically investigate the relationships between art and the social.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A nonlinear finite element analysis was carried out to investigate the viscoplastic deformation of solder joints in a ball grid array (BGA) package under temperature cycle. The effects of constraint on print circuit board (PCB) and stiffness of substrate on the deformation behaviour of the solder joints were also studied. A relative damage stress was adopted to analyze the potential failure sites in the solder joints. The results indicated that high inelastic strain and strain energy density were developed in the joints close to the package center. On the other hand, high constraint and high relative damage stress were associated with the joint closest to the edge of the silicon chip. The joint closest to the edge of the silicon chip was regarded as the most susceptible failure site if cavitation instability is the dominant failure mechanism. Increase the external constraint on the print circuit board (PCB) causes a slight increase in stress triaxiality (m/eq) and relative damage stress in the joint closest to the edge of silicon die. The relative damage stress is not sensitive to the Young’s modulus of the substrate.