51 resultados para Bacterial pollution of water

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach that is slowly replacing neoclassical models of economic growth and commodity based industrial activities, knowledge based urban development (KBUD) aims to provide opportunities for citiesw to foster knowledge creation, exchange and innovation, and is based on the concepts of both sustainable urban development and economic prosperity; sustainable uses and protection of natural resources are therefore integral parts of KBUD. As such, stormwater, which has been recognised as one of the main culprits of aquatic ecosystem pollution and as therefore a significant threat to the goal of sustainable urban development, needs to be managed in a manner that produces ecologically sound outcomes. Water sensitive urban design (WSUD) is one of the key responses to the need to better management urban stormwater runoff and supports KBUD by providing an alternative, innovative and effective strategy to traditional stormwater management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transverse spin relaxation rates of water protons in articular cartilage and tendon depend on the orientation of the tissue relative to the applied static magnetic field. This complicates the interpretation of magnetic resonance images of these tissues. At the same time, relaxation data can provide information about their organisation and microstructure. We present a theoretical analysis of the anisotropy of spin relaxation of water protons observed in fully hydrated cartilage. We demonstrate that the anisotropy of transverse relaxation is due almost entirely to intramolecular dipolar coupling modulated by a specific mode of slow molecular motion: the diffusion of water molecules in the hydration shell of a collagen fibre around the fibre, such that the molecular director remains perpendicular to the fibre. The theoretical anisotropy arising from this mechanism follows the “magic-angle” dependence observed in magnetic-resonance measurements of cartilage and tendon and is in good agreement with the available experimental results. We discuss the implications of the theoretical findings for MRI of ordered collagenous tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water Sensitive Urban Design (WSUD) systems have the potential mitigate the hydrologic disturbance and water quality concerns associated with stormwater runoff from urban development. In the last few years WSUD has been strongly promoted in South East Queensland (SEQ) and new developments are now required to use WSUD systems to manage stormwater runoff. However, there has been limited field evaluation of WSUD systems in SEQ and consequently knowledge of their effectiveness in the field, under storm events, is limited. The objective of this research project was to assess the effectiveness of WSUD systems installed in a residential development, under real storm events. To achieve this objective, a constructed wetland, bioretention swale and a bioretention basin were evaluated for their ability to improve the hydrologic and water quality characteristics of stormwater runoff from urban development. The monitoring focused on storm events, with sophisticated event monitoring stations measuring the inflow and outflow from WSUD systems. Data analysis undertaken confirmed that the constructed wetland, bioretention basin and bioretention swale improved the hydrologic characteristics by reducing peak flow. The bioretention systems, particularly the bioretention basin also reduced the runoff volume and frequency of flow, meeting key objectives of current urban stormwater management. The pollutant loads were reduced by the WSUD systems to above or just below the regional guidelines, showing significant reductions to TSS (70-85%), TN (40-50%) and TP (50%). The load reduction of NOx and PO4 3- by the bioretention basin was poor (<20%), whilst the constructed wetland effectively reduced the load of these pollutants in the outflow by approximately 90%. The primary reason for the load reduction in the wetland was due to a reduction in concentration in the outflow, showing efficient treatment of stormwater by the system. In contrast, the concentration of key pollutants exiting the bioretention basin were higher than the inflow. However, as the volume of stormwater exiting the bioretention basin was significantly lower than the inflow, a load reduction was still achieved. Calibrated MUSIC modelling showed that the bioretention basin, and in particular, the constructed wetland were undersized, with 34% and 62% of stormwater bypassing the treatment zones in the devices. Over the long term, a large proportion of runoff would not receive treatment, considerably reducing the effectiveness of the WSUD systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Providing water infrastructure in times of accelerating climate change presents interesting new problems. Expanding demands must be met or managed in contexts of increasingly constrained sources of supply, raising ethical questions of equity and participation. Loss of agricultural land and natural habitats, the coastal impacts of desalination plants and concerns over re-use of waste water must be weighed with demand management issues of water rationing, pricing mechanisms and inducing behaviour change. This case study examines how these factors impact on infrastructure planning in South East Queensland, Australia: a region with one of the developed world’s most rapidly growing populations, which has recently experienced the most severe drought in its recorded history. Proposals to match forecast demands and potential supplies for water over a 20 year period are reviewed by applying ethical principles to evaluate practical plans to meet the water needs of the region’s activities and settlements.