3 resultados para BNP
em Queensland University of Technology - ePrints Archive
Resumo:
Background: Current blood based diagnostic assays to detect heart failure (HF) have large intra-individual and inter-individual variations which have made it difficult to determine whether the changes in the analyte levels reflect an actual change in disease activity. Human saliva mirrors the body's health and well being and similar to 20% of proteins that are present in blood are also found in saliva. Saliva has numerous advantages over blood as a diagnostic fluid which allows for a non-invasive, simple, and safe sample collection. The aim of our study was to develop an immunoassay to detect NT-proBNP in saliva and to determine if there is a correlation with blood levels. Methods: Saliva samples were collected from healthy volunteers (n = 40) who had no underlying heart conditions and HF patients (n = 45) at rest. Samples were stored at -80 degrees C until analysis. A customised homogeneous sandwich AlphaLISA((R)) immunoassay was used to quantify NT-proBNP levels in saliva. Results: Our NT-proBNP immunoassay was validated against a commercial Roche assay on plasma samples collected from HF patients (n = 37) and the correlation was r(2) = 0.78 (p<0.01, y = 1.705 x +1910.8). The median salivary NT-proBNP levels in the healthy and HF participants were <16 pg/mL and 76.8 pg/mL, respectively. The salivary NT-proBNP immunoassay showed a clinical sensitivity of 82.2% and specificity of 100%, positive predictive value of 100% and negative predictive value of 83.3%, with an overall diagnostic accuracy of 90.6%. Conclusion: We have firstly demonstrated that NT-proBNP can be detected in saliva and that the levels were higher in heart failure patients compared with healthy control subjects. Further studies will be needed to demonstrate the clinical relevance of salivary NT-proBNP in unselected, previously undiagnosed populations.
Resumo:
The measurements of plasma natriuretic peptides (NT-proBNP, proBNP and BNP) are used to diagnose heart failure but these are expensive to produce. We describe a rapid, cheap and facile production of proteins for immunoassays of heart failure. DNA encoding N-terminally His-tagged NT-proBNP and proBNP were cloned into the pJexpress404 vector. ProBNP and NT-proBNP peptides were expressed in Escherichia coli, purified and refolded in vitro. The analytical performance of these peptides were comparable with commercial analytes (NT-proBNP EC50 for the recombinant is 2.6 ng/ml and for the commercial material is 5.3 ng/ml) and the EC50 for recombinant and commercial proBNP, are 3.6 and 5.7 ng/ml respectively). Total yield of purified refolded NT-proBNP peptide was 1.75 mg/l and proBNP was 0.088 mg/l. This approach may also be useful in expressing other protein analytes for immunoassay applications. To develop a cost effective protein expression method in E. coli to obtain high yields of NT-proBNP (1.75 mg/l) and proBNP (0.088 mg/l) peptides for immunoassay use.
Resumo:
Increased concentrations of biomarkers reflecting myocardial stress such as cardiac troponin I and T and brain natriuretic peptide (BNP) have been observed following strenuous, long-lasting endurance exercise. The pathophysiological mechanisms are still not fully elucidated and the interpretations of increased post-exercise concentrations range from (i) evidence for exercise-induced myocardial damage to (ii) non-relevant spurious troponin elevations, presumably caused by assay imprecision or heterophilic antibodies. Several lines of evidence suggest that inflammatory processes or oxidative stress could be involved in the rise of NT-proBNP and Troponin observed in critically ill patients with sepsis or burn injury. We tested the hypothesis that inflammatory or oxidative stress is also responsible for exercise-induced cardiomyocyte strain in a large cohort of triathletes following an Ironman triathlon. However, the post-race increase in cardiac troponin T and NT-proBNP was not associated with several markers of exercise-induced inflammation, oxidative stress or antioxidant vitamins. Therefore, we clearly need more studies with other inflammatory markers and different designs to elucidate the scientific background for increases in myocardial stress markers following strenuous endurance events.