257 resultados para BAND-STRUCTURES

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This doctoral studies focused on the development of new materials for efficient use of solar energy for environmental applications. The research investigated the engineering of the band gap of semiconductor materials to design and optimise visible-light-sensitive photocatalysts. Experimental studies have been combined with computational simulation in order to develop predictive tools for a systematic understanding and design on the crystal and energy band structures of multi-component metal oxides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nonlinear self-interaction of the potential surface magnetoplasmons, propagating across the external magnetic field at the n-type semiconductor-metal interface is described in this manuscript. The studied nonlinearity is due to the free carriers dispersion law nonparabolicity and we show that it acts differently in semiconductor materials with normal and inverse band structures. The results of the nonlinear evolution of the surface magnetoplasmons are presented as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The p-block semiconductors are regarded as a new family of visible-light photocatalysts because of their dispersive and anisotropic band structures as well as high chemical stability. The bismuth oxide halides belong to this family and have band structures and dispersion relations that can be engineered by modulating the stoichiometry of the halogen elements. Herein, we have developed a new visible-light photocatalyst Bi 24 O 31 Cl 10 by band engineering, which shows high dye-sensitized photocatalytic activity. Density functional theory calculations reveal that the p-block elements determine the nature of the dispersive electronic structures and narrow band gap in Bi 24 O 31 Cl 10. Bi 24 O 31 Cl 10 exhibits excellent visible-light photocatalytic activity towards the degradation of Rhodamine B, which is promoted by dye sensitization due to compatible energy levels and high electronic mobility. In addition, Bi 24 O 31 Cl 10 is also a suitable photoanode material for dye-sensitized solar cells and shows power conversion efficiency of 1.5%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oriented, single-crystalline, one-dimensional (1D) TiO2 nanostructures would be most desirable for providing fascinating properties and features, such as high electron mobility or quantum confinement effects, high specific surface area, and even high mechanical strength, but achieving these structures has been limited by the availability of synthetic techniques. In this study, a concept for precisely controlling the morphology of 1D TiO2 nanostructures by tuning the hydrolysis rate of titanium precursors is proposed. Based on this innovation, oriented 1D rutile TiO2 nanostructure arrays with continually adjustable morphologies, from nanorods (NRODs) to nanoribbons (NRIBs), and then nanowires (NWs), as well as the transient state morphologies, were successfully synthesized. The proposed method is a significant finding in terms of controlling the morphology of the 1D TiO2 nano-architectures, which leads to significant changes in their band structures. It is worth noting that the synthesized rutile NRIBs and NWs have a comparable bandgap and conduction band edge height to those of the anatase phase, which in turn enhances their photochemical activity. In photovoltaic performance tests, the photoanode constructed from the oriented NRIB arrays possesses not only a high surface area for sufficient dye loading and better light scattering in the visible light range than for the other morphologies, but also a wider bandgap and higher conduction band edge, with more than 200% improvement in power conversion efficiency in dye-sensitized solar cells (DSCs) compared with NROD morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How is your academic institution structured? If you work within a university, then no doubt you are familiar with the use of faculties or perhaps colleges. What about departments or schools? Whatever names or structures are employed, how would you describe the working relationship between academics and professional staff members? As a research scientist and academic over the last twenty years, my appointments have almost always been made through academic departments or schools. In each case, the academic unit has been led by a senior academic manager, such as a chair or head, supported by a dedicated team of professional staff. More recently, however, I have had the opportunity of leading an academic discipline and the experience has led me to reflect more broadly about leadership styles and academic structures within the Australian higher education sector. The written record of this reflection was published last year in the Australian Universities Review (Harkin and Healy, 2013), but I’m pleased to be able to provide a brief synopsis here for the readership of Insights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the well-known Kohn anomaly predicts Tc for ordered AlB2-type structures. We use ab initio Density Functional Theory to calculate phonon dispersions for Mg1-xAlxB2 compositions and identify a phonon anomaly with magnitude that predicts experimental values of Tc for all x. Key features of these anomalies correlate with the electronic structure of Mg1-xAlxB2. This approach predicts Tc for other known AlB2-type structures as well as new compositions. We predict that Mg0.5Ba0.5B2 will show Tc = 63.6 ± 6.6 K. Other forms of the Mg1-xBaxB2 series will also be superconductors when successfully synthesised. Our calculations predict that the end-member composition, BaB2, is likely to show a Tc significantly higher than currently achieved by other diborides although an applied pressure ~16 GPa may be required to stabilise the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tridecameric Al-polymer [AlO4Al12(OH)24(H2O)12]7+ was prepared by forced hydrolysis of Al3+ up to an OH/Al molar ratio of 2.2. Under slow evaporation crystals were formed of Al13-nitrate. Upon addition of sulfate the tridecamer crystallised as the monoclinic Al13-sulfate. These crystals have been studied using near-infrared spectroscopy and compared to Al2(SO4)3.16H2O. Although the near-infrared spectra of the Al13-sulfate and nitrate are very similar indicating similar crystal structures, there are minor differences related to the strength with which the crystal water molecules are bonded to the salt groups. The interaction between crystal water and nitrate is stronger than with the sulfate as reflected by the shift of the crystal water band positions from 6213, 4874 and 4553 cm–1 for the Al13 sulfate towards 5925, 4848 and 4532 cm–1 for the nitrate. A reversed shift from 5079 and 5037 cm–1 for the sulfate towards 5238 and 5040 cm–1 for the nitrate for the water molecules in the Al13 indicate that the nitrate-Al13 bond is weakened due to the influence of the crystal water on the nitrate. The Al-OH bond in the Al13 complex is not influenced by changing the salt group due to the shielding by the water molecules of the Al13 complex.

Relevância:

20.00% 20.00%

Publicador: