20 resultados para Ayling, James R. (1905-19..?) -- Portraits
em Queensland University of Technology - ePrints Archive
Resumo:
The Open and Trusted Health Information Systems (OTHIS) Research Group has formed in response to the health sector’s privacy and security requirements for contemporary Health Information Systems (HIS). Due to recent research developments in trusted computing concepts, it is now both timely and desirable to move electronic HIS towards privacy-aware and security-aware applications. We introduce the OTHIS architecture in this paper. This scheme proposes a feasible and sustainable solution to meeting real-world application security demands using commercial off-the-shelf systems and commodity hardware and software products.
Resumo:
Background: Exercise could contribute to weight loss by altering the sensitivity of the appetite regulatory system. Objective: The aim of this study was to assess the effects of 12 wk of mandatory exercise on appetite control. Design: Fifty-eight overweight and obese men and women [mean (±SD) body mass index (in kg/m2) = 31.8 ± 4.5, age = 39.6 ± 9.8 y, and maximal oxygen intake = 29.1 ± 5.7 mL · kg–1 · min–1] completed 12 wk of supervised exercise in the laboratory. The exercise sessions were designed to expend 2500 kcal/wk. Subjective appetite sensations and the satiating efficiency of a fixed breakfast were compared at baseline (week 0) and at week 12. An Electronic Appetite Rating System was used to measure subjective appetite sensations immediately before and after the fixed breakfast in the immediate postprandial period and across the whole day. The satiety quotient of the breakfast was determined by calculating the change in appetite scores relative to the breakfast's energy content. Results: Despite large variability, there was a significant reduction in mean body weight (3.2 ± 3.6 kg), fat mass (3.2 ± 2.2 kg), and waist circumference (5.0 ± 3.2 cm) after 12 wk. The analysis showed that a reduction in body weight and body composition was accompanied by an increase in fasting hunger and in average hunger across the day (P < 0.0001). Paradoxically, the immediate and delayed satiety quotient of the breakfast also increased significantly (P < 0.05). Conclusions: These data show that the effect of exercise on appetite regulation involves at least 2 processes: an increase in the overall (orexigenic) drive to eat and a concomitant increase in the satiating efficiency of a fixed meal.
Resumo:
The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrrolidine, piperidine, isoindoline, and azaphenalene) were determined experimentally by cyclic voltammetry in acetonitrile, and also via high-level ab initio molecular orbital calculations. It is shown that the potentials are influenced by the type of ring system, ring substituents and/or groups surrounding the radical moiety. For the pyrrolidine, piperidine, and isoindolines there is excellent agreement (mean absolute deviation of 0.05 V) between the calculated and experimental oxidation potentials; for the azaphenalenes, however, there is an extraordinary discrepancy (mean absolute deviation of 0.60 V), implying that their one-electron oxidation might involve additional processes not considered in the theoretical calculations. This recently developed azaphenalene class of nitroxide represents a new variant of a nitroxide ring fused to an aromatic system and details of the synthesis of five derivatives involving differing aryl substitution are also presented.
Resumo:
Two series of novel ruthenium bipyridyl dyes incorporating sulfur-donor bidentate ligands with general formula \[Ru(R-bpy)2C2N2S2] and \[Ru(R-bpy)2(S2COEt)]\[NO3] (where R =H, CO2Et, CO2H; C2N2S2 = cyanodithioimidocarbonate and S2COEt = ethyl xanthogenate) have been synthesized and characterized spectroscopically, electrochemically and computationally. The acid derivatives in both series (C2N2S2 3 and S2COEt 6) were used as a photosensitizer in a dye-sensitized solar cell (DSSC) and the incident photo-to-current conversion efficiency (IPCE), overall efficiency (_) and kinetics of the dye/TiO2 system were investigated. It was found that 6 gave a higher efficiency cell than 3 despite the latter dye’s more favorable electronic properties, such as greater absorption range, higher molar extinction coefficient and large degree of delocalization of the HOMO. The transient absorption spectroscopy studies revealed that the recombination kinetics of 3 were unexpectedly fast, which was attributed to the terminal CN on the ligand binding to the TiO2, as evidenced by an absorption study of R =H and CO2Et dyes sensitized on TiO2, and hence leading to a lower efficiency DSSC.
Resumo:
Aging is associated with loss of endurance; however, aging is also associated with decreased fatigue during maximal isometric contractions. The aims of this study were to examine the relationship between age and walking endurance (WE) and maximal isometric fatigue (MIF) and to determine which metabolic/fitness components explain the expected age effects on WE and MIF. Subjects were 96 pre-menopausal women. Oxygen uptake (walking economy) was assessed during a 3-mph walk; aerobic capacity and WE by progressive treadmill test; knee extension strength by isometric contractions, MIF during a 90-s isometric plantar flexion (muscle metabolism measured by 31P MRS). Age was related to increased walking economy (low VO2, r = −0.19, P < 0.03) and muscle metabolic economy (force/ATP, 0.34, P = 0.01), and reduced MIF (−0.26, P < 0.03). However, age was associated with reduced WE (−0.28, P < 0.01). Multiple regression showed that muscle metabolic economy explained the age-related decrease in MIF (partial r for MIF and age −0.13, P = 0.35) whereas walking economy did not explain the age-related decrease in WE (partial r for WE and age −0.25, P < 0.02). Inclusion of VO2max and knee endurance strength accounted for the age-related decreased WE (partial r for WE and age = 0.03, P > 0.80). In premenopausal women, age is related to WE and MIF. In addition, these results support the hypothesis that age-related increases in metabolic economy may decrease MIF. However, decreased muscle strength and oxidative capacity are related to WE.
Resumo:
A novel antioxidant for the potential treatment of ischaemia was designed by incorporating an isoindoline nitroxide into the framework of the free radical scavenger edaravone. 5-(3-Methyl-pyrazol-5-ol-1-yl)-1,1,3,3-tetramethylisoindolin-2-yloxyl 7 was prepared by N-arylation of 3-methyl-5-pyrazolone with 5-iodo-1,1,3,3-tetramethylisoindoline-2-yloxyl 8 in the presence of catalytic copper(I)iodide. Evaluation of 7, its methoxyamine derivative 10 and 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO) against edaravone 1 in ischaemic rat atrial cardiomyocytes revealed significant decreases in cell death after prolonged ischaemia for each agent; however the protective effect of the novel antioxidant 7 (showing greater than 85% reduction in cell death at 100 μM) was significantly enhanced over that of edaravone 1 alone. Furthermore, the activity for 7 was found to be equal to or greater than the potent cardioprotective agent N6-cyclopentyladenosine (CPA). The methoxyamine adduct 10 and edaravone 1 showed no difference between the extent of reduction in cell death whilst CTMIO had only a modest protective effect.
Resumo:
Dye-sensitised solar cells have emerged as an important developing technology for low-cost solar energy conversion and a crucial element of these is the dye, responsible for light harvesting and control of interfacial electron-transfer processes.[1] A number of examples of dye exist in the literature which link a ruthenium polypyridyl complex to another platinum group metal complex such as Ru (II), Os (II), Re (I) or Rh (III) via a bridging ligand.[2-6] These systems are often referred to as heterosupramolecular triads when adsorbed on the surface of TiO2 as the semiconductor becomes an active component in the system. A number of problems can arise with these types of sensitisers, for example if a flexible linker, e.g. bis-pyridylethane, is used to couple the two complexes it can be hard to control the orientation of the whole dye. This may lead to the resultant dye cation hole being closer to the surface than desired, and hence the long-lived charge-separated state is not achieved. In addition the size of these dyes may be much larger than that of a mononuclear complex and can lead to poor pore filling on the TiO2 and lower dye coverage, leading to a lower efficiency cell.[7] Despite these issues, efficient charge-separation has been achieved with polynuclear complexes and a long-lived state on the millisecond timescale has been observed for a trinuclear ruthenium complex.[8]
Resumo:
Solar ultraviolet (UV) radiation causes a range of skin disorders as well as affecting vision and the immune system. It also inhibits development of plants and animals. UV radiation monitoring is used routinely in some locations in order to alert the population to harmful solar radiation levels. There is ongoing research to develop UV-selective-sensors [1–3]. A personal, inexpensive and simple UV-selective-sensor would be desirable to measure UV intensity exposure. A prototype of such a detector has been developed and evaluated in our laboratory. It comprises a sealed two-electrode photoelectrochemical cell (PEC) based on nanocrystalline TiO2. This abundant semiconducting oxide, which is innocuous and very sta-ble, is the subject of intense study at present due to its application in dye sensitized solar cells (DSSC) [4]. Since TiO2 has a wide band gap (EG = 3.0 eV for rutile and EG = 3.2 eV for anatase), it is inher-ently UV-selective, so that UV filters are not required. This further reduces the cost of the proposed photodetector in comparison with conventional silicon detectors. The PEC is a semiconductor–electrolyte device that generates a photovoltage when it is illuminated and a corresponding photocur-rent if the external circuit is closed. The device does not require external bias, and the short circuit current is generally a linear function of illumination intensity. This greatly simplifies the elec-trical circuit needed when using the PEC as a photodetector. DSSC technology, which is based on a PEC containing nanocrystalline TiO2 sensitized with a ruthenium dye, holds out the promise of solar cells that are significantly cheaper than traditional silicon solar cells. The UV-sensor proposed in this paper relies on the cre-ation of electron–hole pairs in the TiO2 by UV radiation, so that it would be even cheaper than a DSSC since no sensitizer dye is needed. Although TiO2 has been reported as a suitable material for UV sensing [3], to the best of our knowledge, the PEC configuration described in the present paper is a new approach. In the present study, a novel double-layer TiO2 structure has been investigated. Fabrication is based on a simple and inexpensive technique for nanostructured TiO2 deposition using microwave-activated chemical bath deposition (MW-CBD) that has been reported recently [5]. The highly transparent TiO2 (anatase) films obtained are densely packed, and they adhere very well to the transparent oxide (TCO) substrate [6]. These compact layers have been studied as contacting layers in double-layer TiO2 structures for DSSC since improvement of electron extraction at the TiO2–TCO interface is expected [7]. Here we compare devices incorporating a single mesoporous nanocrystalline TiO2 structure with devices based on a double structure in which a MW-CBD film is situated between the TCO and the mesoporous nanocrystalline TiO2 layer. Besides improving electron extraction, this film could also help to block recombination of electrons transferred to the TCO with oxidized species in the electrolyte, as has been reported in the case of DSSC for compact TiO2 films obtained by other deposition tech-niques [8,9]. The two types of UV-selective sensors were characterized in detail. The current voltage characteristics, spectral response, inten-sity dependence of short circuit current and response times were measured and analyzed in order to evaluate the potential of sealed mesoporous TiO2-based photoelectrochemical cells (PEC) as low cost personal UV-photodetectors.
Resumo:
BACKGROUND: Broccoli consumption has been associated with a reduced risk of prostate cancer. Isothiocyanates (ITCs) derived from glucosinolates that accumulate in broccoli are dietary compounds that may mediate these health effects. Sulforaphane (SF, 4-methylsulphinylbutyl ITC) derives from heading broccoli (calabrese) and iberin (IB, 3-methylsulphinypropyl ITC) from sprouting broccoli. While there are many studies regarding the biological activity of SF, mainly undertaken with cancerous cells, there are few studies associated with IB. METHODS: Primary epithelial and stromal cells were derived from benign prostatic hyperplasia tissue. Affymetrix U133 Plus 2.0 whole genome arrays were used to compare global gene expression between these cells, and to quantify changes in gene expression following exposure to physiologically appropriate concentrations of SF and IB. Ontology and pathway analyses were used to interpret results. Changes in expression of a subset of genes were confirmed by real-time RT-PCR. RESULTS: Global gene expression profiling identified epithelial and stromal-specific gene expression profiles. SF induced more changes in epithelial cells, whereas IB was more effective in stromal cells. Although IB and SF induced different changes in gene expression in both epithelial and stromal cells, these were associated with similar pathways, such as cell cycle and detoxification. Both ITCs increased expression of PLAGL1, a tumor suppressor gene, in stromal cells and suppressed expression of the putative tumor promoting genes IFITM1, CSPG2, and VIM in epithelial cells. CONCLUSION: These data suggest that IB and SF both alter genes associated with cancer prevention, and IB should be investigated further as a potential chemopreventative agent.
Resumo:
Pricing greenhouse gas emissions is a burgeoning and possibly lucrative financial means for climate change mitigation. Emissions pricing is being used to fund emissions-abatement technologies and to modify land management to improve carbon sequestration and retention. Here we discuss the principal land-management options under existing and realistic future emissions-price legislation in Australia, and examine them with respect to their anticipated direct and indirect effects on biodiversity. The main ways in which emissions price-driven changes to land management can affect biodiversity are through policies and practices for (1) environmental plantings for carbon sequestration, (2) native regrowth, (3) fire management, (4) forestry, (5) agricultural practices (including cropping and grazing), and (6) feral animal control. While most land-management options available to reduce net greenhouse gas emissions offer clear advantages to increase the viability of native biodiversity, we describe several caveats regarding potentially negative outcomes, and outline components that need to be considered if biodiversity is also to benefit from the new carbon economy. Carbon plantings will only have real biodiversity value if they comprise appropriate native tree species and provide suitable habitats and resources for valued fauna. Such plantings also risk severely altering local hydrology and reducing water availability. Management of regrowth post-agricultural abandonment requires setting appropriate baselines and allowing for thinning in certain circumstances, and improvements to forestry rotation lengths would likely increase carbon-retention capacity and biodiversity value. Prescribed burning to reduce the frequency of high-intensity wildfires in northern Australia is being used as a tool to increase carbon retention. Fire management in southern Australia is not readily amenable for maximising carbon storage potential, but will become increasingly important for biodiversity conservation as the climate warms. Carbon price-based modifications to agriculture that would benefit biodiversity include reductions in tillage frequency and livestock densities, reductions in fertiliser use, and retention and regeneration of native shrubs; however, anticipated shifts to exotic perennial grass species such as buffel grass and kikuyu could have net negative implications for native biodiversity. Finally, it is unlikely that major reductions in greenhouse gas emissions arising from feral animal control are possible, even though reduced densities of feral herbivores will benefit Australian biodiversity greatly.
Resumo:
High-resolution, high-contrast, three-dimensional images of live cell and tissue architecture can be obtained using second harmonic generation (SHG), which comprises non-absorptive frequency changes in an excitation laser line. SHG does not require any exogenous antibody or fluorophore labeling, and can generate images from unstained sections of several key endogenous biomolecules, in a wide variety of species and from different types of processed tissue. Here, we examined normal control human skin sections and human burn scar tissues using SHG on a multi-photon microscope (MPM). Examination and comparison of normal human skin and burn scar tissue demonstrated a clear arrangement of fibers in the dermis, similar to dermal collagen fiber signals. Fluorescence-staining confirmed the MPM-SHG collagen colocalization with antibody staining for dermal collagen type-I but not fibronectin or elastin. Furthermore, we were able to detect collagen MPM-SHG signal in human frozen sections as well as in unstained paraffin embedded tissue sections that were then compared with hematoxylin and eosin staining in the identical sections. This same approach was also successful in localizing collagen in porcine and ovine skin samples, and may be particularly important when species-specific antibodies may not be available. Collectively, our results demonstrate that MPM SHG-detection is a useful tool for high resolution examination of collagen architecture in both normal and wounded human, porcine and ovine dermal tissue.
Resumo:
Commercially available generic Superglue (cyanoacrylate glue) can be used as an alternative mounting medium for stained resin-embedded semithin sections. It is colourless and contains a volatile, quick-setting solvent that produces permanent mounts of semithin sections for immediate inspection under the light microscope. Here, we compare the use of cyanoacrylate glue for mounting semithin sections with classical dibutyl phthalate xylene (DPX) in terms of practical usefulness, effectiveness and the quality of the final microscopic image.
Resumo:
There have now been two decades of rhetoric on the need for culturally and contextually appropriate perspectives in international education. However, the extent to which courses, provision and pedagogy have truly reflected differences in cultural characteristics and learning preferences is still open to question. Little attention has been paid to these matters in quality assurance frameworks. This chapter discusses these issues and draws upon Hofstede’s cultural dimensions framework and studies into Asian pedagogy and uses of educational technology. It proposes a benchmark and performance indicators for assuring cultural, contextual, educational and technological appropriateness in the provision of transnational distance education in Asia by Australian universities.
Resumo:
This study evaluated the validity of the Previous Day Physical Activity Recall (PDPAR) self-report instrument in quantifying after-school physical activity behavior in fifth-grade children. Thirty-eight fifth-grade students (mean age, 10.8 +/- 0.1; 52.6% female; 26.3% African American) from two urban elementary schools completed the PDPAR after wearing a CSA WAM 7164 accelerometer for a day. The mean within-subject correlation between self-reported MET level and total counts for each 30-min block was 0.57 (95% C.I., 0.51-0.62). Self-reported mean MET level during the after-school period and the number of 30-min blocks with activity rated at greater than or equal to 6 METs were significantly correlated with the CSA outcome variables. Validity coefficients for these variables ranged from 0.35 to 0.43 (p <.05). Correlations between the number of 30-min blocks with activity rated at greater than or equal to 3 METs and the CSA variables were positive but failed to reach statistical significance (r = 0.19-0.23). The PDPAR provides moderately valid estimates of relative participation in vigorous activity and mean MET level in fifth-grade children. Caution should be exercised when using the PDPAR to quantify moderate physical activity in preadolescent children.
Resumo:
Lack of physical activity and low levels of physical fitness are thought to be contributing factors to the high prevalence of obesity in African-American girls, To examine this hypothesis, we compared habitual physical activity and physical fitness in 54 African-American girls with obesity and 96 African-American girls without obesity residing in rural South Carolina, Participation in vigorous (greater than or equal to 6 METs) (VPA) or moderate and vigorous physical activity (greater than or equal to 4 METs) (MVPA) was assessed on three consecutive days using the Previous Day Physical Activity Recall, Cardiorespiratory fitness was assessed using the PWC 170 cycle ergometer test, Upper body strength was determined at two sites via isometric cable tensiometer tests, Relative to their counterparts without obesity, girls with obesity reported significantly fewer 30-minute blocks of VPA (0.90 +/- 0.14 vs. 1.3 +/- 0.14) and MVPA (1.2 +/- 0.18 vs. 1.7 +/- 0.16) (p<0.01), Within the entire sample, VPA and MVPA were inversely associated with body mass index (r=-0.17 and r=-0.19) and triceps skinfold thickness (r=-0.19 and r=-0.22) (p<0.05), In the PWC 170 test and isometric strength tests, girls with obesity demonstrated absolute scores that were similar to, or greater than, those of girls without obesity; however, when scores were expressed relative to bodyweight, girls with obesity demonstrated significantly lower values (p<0.05). The results support the hypothesis that lack of physical activity and low physical fitness are important contributing factors in the development and/or maintenance of obesity in African-American girls.