107 resultados para Automatic theorem proving

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many modern business environments employ software to automate the delivery of workflows; whereas, workflow design and generation remains a laborious technical task for domain specialists. Several differ- ent approaches have been proposed for deriving workflow models. Some approaches rely on process data mining approaches, whereas others have proposed derivations of workflow models from operational struc- tures, domain specific knowledge or workflow model compositions from knowledge-bases. Many approaches draw on principles from automatic planning, but conceptual in context and lack mathematical justification. In this paper we present a mathematical framework for deducing tasks in workflow models from plans in mechanistic or strongly controlled work environments, with a focus around automatic plan generations. In addition, we prove an associative composition operator that permits crisp hierarchical task compositions for workflow models through a set of mathematical deduction rules. The result is a logical framework that can be used to prove tasks in workflow hierarchies from operational information about work processes and machine configurations in controlled or mechanistic work environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Death certificates provide an invaluable source for cancer mortality statistics; however, this value can only be realised if accurate, quantitative data can be extracted from certificates – an aim hampered by both the volume and variable nature of certificates written in natural language. This paper proposes an automatic classification system for identifying cancer related causes of death from death certificates. Methods Detailed features, including terms, n-grams and SNOMED CT concepts were extracted from a collection of 447,336 death certificates. These features were used to train Support Vector Machine classifiers (one classifier for each cancer type). The classifiers were deployed in a cascaded architecture: the first level identified the presence of cancer (i.e., binary cancer/nocancer) and the second level identified the type of cancer (according to the ICD-10 classification system). A held-out test set was used to evaluate the effectiveness of the classifiers according to precision, recall and F-measure. In addition, detailed feature analysis was performed to reveal the characteristics of a successful cancer classification model. Results The system was highly effective at identifying cancer as the underlying cause of death (F-measure 0.94). The system was also effective at determining the type of cancer for common cancers (F-measure 0.7). Rare cancers, for which there was little training data, were difficult to classify accurately (F-measure 0.12). Factors influencing performance were the amount of training data and certain ambiguous cancers (e.g., those in the stomach region). The feature analysis revealed a combination of features were important for cancer type classification, with SNOMED CT concept and oncology specific morphology features proving the most valuable. Conclusion The system proposed in this study provides automatic identification and characterisation of cancers from large collections of free-text death certificates. This allows organisations such as Cancer Registries to monitor and report on cancer mortality in a timely and accurate manner. In addition, the methods and findings are generally applicable beyond cancer classification and to other sources of medical text besides death certificates.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following technical report describes the approach and algorithm used to detect marine mammals from aerial imagery taken from manned/unmanned platform. The aim is to automate the process of counting the population of dugongs and other mammals. We have developed and algorithm that automatically presents to a user a number of possible candidates of these mammals. We tested the algorithm in two distinct datasets taken from different altitudes. Analysis and discussion is presented in regards with the complexity of the input datasets, the detection performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buildings consume resources and energy, contribute to pollution of our air, water and soil, impact the health and well-being of populations and constitute an important part of the built environment in which we live. The ability to assess their design with a view to reducing that impact automatically from their 3D CAD representations enables building design professionals to make informed decisions on the environmental impact of building structures. Contemporary 3D object-oriented CAD files contain a wealth of building information. LCADesign has been designed as a fully integrated approach for automated eco-efficiency assessment of commercial buildings direct from 3D CAD. LCADesign accesses the 3D CAD detail through Industry Foundation Classes (IFCs) - the international standard file format for defining architectural and constructional CAD graphic data as 3D real-world objects - to permit construction professionals to interrogate these intelligent drawing objects for analysis of the performance of a design. The automated take-off provides quantities of all building components whose specific production processes, logistics and raw material inputs, where necessary, are identified to calculate a complete list of quantities for all products such as concrete, steel, timber, plastic etc and combines this information with the life cycle inventory database, to estimate key internationally recognised environmental indicators such as CML, EPS and Eco-indicator 99. This paper outlines the key modules of LCADesign and their role in delivering an automated eco-efficiency assessment for commercial buildings.