29 resultados para Atomic and Ionic Dynamics in Laser
em Queensland University of Technology - ePrints Archive
Resumo:
Nanosecond dynamics of two separated discharge cycles in an asymmetric dielectric barrier discharge is studied using time-resolved current and voltage measurements synchronized with high-speed (∼5 ns) optical imaging. Nanosecond dc pulses with tailored raise and fall times are used to generate solitary filamentary structures (SFSs) during the first cycle and a uniform glow during the second. The SFSs feature ∼1.5 mm thickness, ∼1.9 A peak current, and a lifetime of several hundred nanoseconds, at least an order of magnitude larger than in common microdischarges. This can be used in alternating localized and uniform high-current plasma treatments in various applications.
Resumo:
There is a concern that high densities of elephants in southern Africa could lead to the overall reduction of other forms of biodiversity. We present a grid-based model of elephant-savanna dynamics, which differs from previous elephant-vegetation models by accounting for woody plant demographics, tree-grass interactions, stochastic environmental variables (fire and rainfall), and spatial contagion of fire and tree recruitment. The model projects changes in height structure and spatial pattern of trees over periods of centuries. The vegetation component of the model produces long-term tree-grass coexistence, and the emergent fire frequencies match those reported for southern African savannas. Including elephants in the savanna model had the expected effect of reducing woody plant cover, mainly via increased adult tree mortality, although at an elephant density of 1.0 elephant/km2, woody plants still persisted for over a century. We tested three different scenarios in addition to our default assumptions. (1) Reducing mortality of adult trees after elephant use, mimicking a more browsing-tolerant tree species, mitigated the detrimental effect of elephants on the woody population. (2) Coupling germination success (increased seedling recruitment) to elephant browsing further increased tree persistence, and (3) a faster growing woody component allowed some woody plant persistence for at least a century at a density of 3 elephants/km2. Quantitative models of the kind presented here provide a valuable tool for exploring the consequences of management decisions involving the manipulation of elephant population densities. © 2005 by the Ecological Society of America.
Resumo:
An attempt was made to investigate the optical emission spectra of atomic, molecular, and ionic species in low-frequency, high-density ICP discharges in pure nitrogen, ar con gases, and gas mixtures Ar+H2, N2+Ar, and N2+H2. The excited species were identified by in situ optical emission intensity (OEI) measurements in the discharge chamber. In general, significant results were obtained.
Resumo:
This paper explores inter-agency working and examines the implications of inter-agency operations for delivering multi-domain service outcomes. Cross-agency collaborative approaches to service delivery are suggested to provide the vehicle for achieving integrated service and policy goals. However, it is argued these need to be crafted ‘fit’ for purpose’ and may not be the requisite approach for all joint purposes. Moreover, some commentators suggest that the optimism about these partnership arrangements and cross-agency actions to resolve complex multi-dimensional problems may be misplaced and propose that further research into the actual rather than desired consequences of these arrangements may find that, at times, partnership working creates negative effects. While collaboration and partnerships are often framed as the way to achieve real breakthroughs in service delivery across agencies, there remain key challenges to interagency working. As more and insistent calls for agencies and other community actors to work together in resolving complex social problems are heeded, the implications of working across organizational boundaries need to be further investigated. This paper investigates cases of inter-agency programmes to understand the dimensions and limitations of inter-agency working. The paper concludes by offering a framework for better inter-agency working that has applicability across all sectors.
Resumo:
Neutral NCN is made in a mass spectrometer by charge stripping of NCN-., while neutral dicyanocarbene NCCCN can be formed by neutralization of either the corresponding anionic and cationic species, NCCCN-. and NCCCN+.. Theoretical calculations at the RCCSD(T)/aug-cc-pVTZ//B3LYP/6-31+G(d) level of theory indicate that the (3)Sigma (-)(g) State of NCCCN is 18 kcal mol(-1) more stable than the (1)A(1) state. While the majority of neutrals formed from either NCCCN-. or NCCCN+. correspond to NCCCN, a proportion of the neutral NCCCN molecules have sufficient excess energy to effect rearrangement, as evidenced by a loss of atomic carbon in the neutralization reionization (NR) spectra of either NCCCN+. and NCCCN-.. C-13 labeling studies indicate that loss of carbon occurs statistically following or accompanied by scrambling of all three carbon atoms. A theoretical study at the B3LYP/6-31+G(d)//B3LYP/6-31+G(d) level of theory indicates that C loss is a consequence of the rearrangement sequence NCCCN --> CNCCN --> CNCNC and that C scrambling occurs within singlet CNCCN via the intermediacy of a four-membered C-2v-symmetrical transition structure.
Resumo:
In this chapter, ideas from ecological psychology and nonlinear dynamics are integrated to characterise decision-making as an emergent property of self-organisation processes in the interpersonal interactions that occur in sports teams. A conceptual model is proposed to capture constraints on dynamics of decisions and actions in dyadic systems, which has been empirically evaluated in simulations of interpersonal interactions in team sports. For this purpose, co-adaptive interpersonal dynamics in team sports such as rubgy union have been studied to reveal control parameter and collective variable relations in attacker-defender dyads. Although interpersonal dynamics of attackers and defenders in 1 vs 1 situations showed characteristics of chaotic attractors, the informational constraints of rugby union typically bounded dyadic systems into low dimensional attractors. Our work suggests that the dynamics of attacker-defender dyads can be characterised as an evolving sequence since players' positioning and movements are connected in diverse ways over time.
Resumo:
Ecological dynamics characterizes adaptive behavior as an emergent, self-organizing property of interpersonal interactions in complex social systems. The authors conceptualize and investigate constraints on dynamics of decisions and actions in the multiagent system of team sports. They studied coadaptive interpersonal dynamics in rugby union to model potential control parameter and collective variable relations in attacker–defender dyads. A videogrammetry analysis revealed how some agents generated fluctuations by adapting displacement velocity to create phase transitions and destabilize dyadic subsystems near the try line. Agent interpersonal dynamics exhibited characteristics of chaotic attractors and informational constraints of rugby union boxed dyadic systems into a low dimensional attractor. Data suggests that decisions and actions of agents in sports teams may be characterized as emergent, self-organizing properties, governed by laws of dynamical systems at the ecological scale. Further research needs to generalize this conceptual model of adaptive behavior in performance to other multiagent populations.
Resumo:
Concern regarding the health effects of indoor air quality has grown in recent years, due to the increased prevalence of many diseases, as well as the fact that many people now spend most of their time indoors. While numerous studies have reported on the dynamics of aerosols indoors, the dynamics of bioaerosols in indoor environments are still poorly understood and very few studies have focused on fungal spore dynamics in indoor environments. Consequently, this work investigated the dynamics of fungal spores in indoor air, including fungal spore release and deposition, as well as investigating the mechanisms involved in the fungal spore fragmentation process. In relation to the investigation of fungal spore dynamics, it was found that the deposition rates of the bioaerosols (fungal propagules) were in the same range as the deposition rates of nonbiological particles and that they were a function of their aerodynamic diameters. It was also found that fungal particle deposition rates increased with increasing ventilation rates. These results (which are reported for the first time) are important for developing an understanding of the dynamics of fungal spores in the air. In relation to the process of fungal spore fragmentation, important information was generated concerning the airborne dynamics of the spores, as well as the part/s of the fungi which undergo fragmentation. The results obtained from these investigations into the dynamics of fungal propagules in indoor air significantly advance knowledge about the fate of fungal propagules in indoor air, as well as their deposition in the respiratory tract. The need to develop an advanced, real-time method for monitoring bioaerosols has become increasingly important in recent years, particularly as a result of the increased threat from biological weapons and bioterrorism. However, to date, the Ultraviolet Aerodynamic Particle Sizer (UVAPS, Model 3312, TSI, St Paul, MN) is the only commercially available instrument capable of monitoring and measuring viable airborne micro-organisms in real-time. Therefore (for the first time), this work also investigated the ability of the UVAPS to measure and characterise fungal spores in indoor air. The UVAPS was found to be sufficiently sensitive for detecting and measuring fungal propagules. Based on fungal spore size distributions, together with fluorescent percentages and intensities, it was also found to be capable of discriminating between two fungal spore species, under controlled laboratory conditions. In the field, however, it would not be possible to use the UVAPS to differentiate between different fungal spore species because the different micro-organisms present in the air may not only vary in age, but may have also been subjected to different environmental conditions. In addition, while the real-time UVAPS was found to be a good tool for the investigation of fungal particles under controlled conditions, it was not found to be selective for bioaerosols only (as per design specifications). In conclusion, the UVAPS is not recommended for use in the direct measurement of airborne viable bioaerosols in the field, including fungal particles, and further investigations into the nature of the micro-organisms, the UVAPS itself and/or its use in conjunction with other conventional biosamplers, are necessary in order to obtain more realistic results. Overall, the results obtained from this work on airborne fungal particle dynamics will contribute towards improving the detection capabilities of the UVAPS, so that it is capable of selectively monitoring and measuring bioaerosols, for which it was originally designed. This work will assist in finding and/or improving other technologies capable of the real-time monitoring of bioaerosols. The knowledge obtained from this work will also be of benefit in various other bioaerosol applications, such as understanding the transport of bioaerosols indoors.
Resumo:
Research on expertise, talent identification and development has tended to be mono-disciplinary, typically adopting adopting neurogenetic deterministic or environmentalist positions, with an over-riding focus on operational issues. In this paper the validity of dualist positions on sport expertise is evaluated. It is argued that, to advance understanding of expertise and talent development, a shift towards a multi-disciplinary and integrative science focus is necessary, along with the development of a comprehensive multi-disciplinary theoretical rationale. Here we elucidate dynamical systems theory as a multi-disciplinary theoretical rationale for capturing how multiple interacting constraints can shape the development of expert performers. This approach suggests that talent development programmes should eschew the notion of common optimal performance models, emphasise the individual nature of pathways to expertise, and identify the range of interacting constraints that impinge on performance potential of individual athletes, rather than evaluating current performance on physical tests referenced to group norms.
Resumo:
Recent claims of equivalence of animal and human reasoning are evaluated and a study of avian cognition serves as an exemplar of weaknesses in these arguments. It is argued that current research into neurobiological cognition lacks theoretical breadth to substantiate comparative analyses of cognitive function. Evaluation of a greater range of theoretical explanations is needed to verify claims of equivalence in animal and human cognition. We conclude by exemplifying how the notion of affordances in multi-scale dynamics can capture behavior attributed to processes of analogical and inferential reasoning in animals and humans.
Resumo:
Abstract As regional and continental carbon balances of terrestrial ecosystems become available, it becomes clear that the soils are the largest source of uncertainty. Repeated inventories of soil organic carbon (SOC) organized in soil monitoring networks (SMN) are being implemented in a number of countries. This paper reviews the concepts and design of SMNs in ten countries, and discusses the contribution of such networks to reducing the uncertainty of soil carbon balances. Some SMNs are designed to estimate country-specific land use or management effects on SOC stocks, while others collect soil carbon and ancillary data to provide a nationally consistent assessment of soil carbon condition across the major land-use/soil type combinations. The former use a single sampling campaign of paired sites, while for the latter both systematic (usually grid based) and stratified repeated sampling campaigns (5–10 years interval) are used with densities of one site per 10–1,040 km². For paired sites, multiple samples at each site are taken in order to allow statistical analysis, while for the single sites, composite samples are taken. In both cases, fixed depth increments together with samples for bulk density and stone content are recommended. Samples should be archived to allow for re-measurement purposes using updated techniques. Information on land management, and where possible, land use history should be systematically recorded for each site. A case study of the agricultural frontier in Brazil is presented in which land use effect factors are calculated in order to quantify the CO2 fluxes from national land use/management conversion matrices. Process-based SOC models can be run for the individual points of the SMN, provided detailed land management records are available. These studies are still rare, as most SMNs have been implemented recently or are in progress. Examples from the USA and Belgium show that uncertainties in SOC change range from 1.6–6.5 Mg C ha−1 for the prediction of SOC stock changes on individual sites to 11.72 Mg C ha−1 or 34% of the median SOC change for soil/land use/climate units. For national SOC monitoring, stratified sampling sites appears to be the most straightforward attribution of SOC values to units with similar soil/land use/climate conditions (i.e. a spatially implicit upscaling approach). Keywords Soil monitoring networks - Soil organic carbon - Modeling - Sampling design
Resumo:
In this article, we analyze the stability and the associated bifurcations of several types of pulse solutions in a singularly perturbed three-component reaction-diffusion equation that has its origin as a model for gas discharge dynamics. Due to the richness and complexity of the dynamics generated by this model, it has in recent years become a paradigm model for the study of pulse interactions. A mathematical analysis of pulse interactions is based on detailed information on the existence and stability of isolated pulse solutions. The existence of these isolated pulse solutions is established in previous work. Here, the pulse solutions are studied by an Evans function associated to the linearized stability problem. Evans functions for stability problems in singularly perturbed reaction-diffusion models can be decomposed into a fast and a slow component, and their zeroes can be determined explicitly by the NLEP method. In the context of the present model, we have extended the NLEP method so that it can be applied to multi-pulse and multi-front solutions of singularly perturbed reaction-diffusion equations with more than one slow component. The brunt of this article is devoted to the analysis of the stability characteristics and the bifurcations of the pulse solutions. Our methods enable us to obtain explicit, analytical information on the various types of bifurcations, such as saddle-node bifurcations, Hopf bifurcations in which breathing pulse solutions are created, and bifurcations into travelling pulse solutions, which can be both subcritical and supercritical.